Given a simple finite-dimensional Lie algebra and an automorphism of finite order, one defines the notion of a twisted toroidal Lie algebra. In this paper, we construct representations of twisted toroidal Lie algebras from twisted modules over affine and lattice vertex algebras.

1.
R. V.
Moody
,
S. E.
Rao
, and
T.
Yokonuma
, “
Toroidal Lie algebras and vertex representations
,”
Geom. Dedicata
35
(
1-3
),
283
307
(
1990
).
2.
Y.
Billig
, “
Principal vertex operator representations for toroidal Lie algebras
,”
J. Math. Phys.
39
(
7
),
3844
3864
(
1998
).
3.
S.
Eswara Rao
and
R. V.
Moody
, “
Vertex representations for N-toroidal Lie algebras and a generalization of the Virasoro algebras
,”
Commun. Math. Phys.
159
,
239
264
(
1994
).
4.
M. A.
Fabbri
and
R. V.
Moody
, “
Irreducible representations of Virasoro-toroidal Lie algebras
,”
Commun. Math. Phys.
159
,
1
13
(
1994
).
5.
N.
Jing
and
K. C.
Misra
, “
Fermionic realization of toroidal Lie algebras of classical types
,”
J. Algebra
324
,
183
194
(
2010
).
6.
N.
Jing
,
K. C.
Misra
, and
C.
Xu
, “
Bosonic realization of toroidal Lie algebras of classical types
,”
Proc. Am. Math. Soc.
137
(
11
),
3609
3618
(
2009
).
7.
S.
Tan
, “
Principal construction of the toroidal Lie algebra of type A1
,”
Math. Zeit.
230
,
621
657
(
1999
).
8.
S.
Tan
, “
Vertex operator representations for toroidal Lie algebras of type Bl
,”
Commun. Algebra
27
,
3593
3618
(
1999
).
9.
V. G.
Kac
,
Infinite-dimensional Lie Algebras
, 3rd ed. (
Cambridge University Press
,
Cambridge
,
1990
).
10.
J.
Fu
and
C.
Jiang
, “
Integrable representations for the twisted full toroidal Lie algebras
,”
J. Algebra
307
,
769
794
(
2007
).
11.
B.
Allison
,
S.
Berman
, and
A.
Pianzola
, “
Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2
,”
J. Eur. Math. Soc.
16
,
327
385
(
2014
).
12.
F.
Chen
,
N.
Jing
,
F.
Kong
, and
S.
Tan
, “
Twisted toroidal Lie algebras and Moody–Rao–Yokonuma presentation
,”
Sci. Chin. Math.
(published online) (
2020
).
13.
N.
Jing
,
C. R.
Mangum
, and
K. C.
Misra
, “
On realization of some twisted toroidal Lie algebras
,” in
Lie Algebras, Vertex Operator Algebras, and Related Topics
, Contemporary Mathematics Vol. 139–148 (
American Mathematical Society
,
Providence, RI
,
2017
).
14.
R. E.
Borcherds
, “
Vertex algebras, Kac–Moody algebras, and the Monster
,”
Proc. Natl. Acad. Sci. U. S. A.
83
,
3068
3071
(
1986
).
15.
E.
Frenkel
and
D.
Ben-Zvi
,
Vertex Algebras and Algebraic Curves
, Mathematical Surveys and Monographs Vol. 88 (
American Mathematical Society
,
Providence, RI
,
2001
); (2nd ed.,
2004
).
16.
I. B.
Frenkel
,
J.
Lepowsky
, and
A.
Meurman
,
Vertex Operator Algebras and the Monster
, Pure and Appl. Mathematics Vol. 134 (
Academic Press
,
Boston
,
1988
).
17.
V. G.
Kac
,
Vertex Algebras for Beginners
, University Lecture Series Vol. 10, 2nd ed. (
American Mathematical Society
,
1998
).
18.
V. G.
Kac
,
A. K.
Raina
, and
N.
Rozhkovskaya
,
Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras
, Advanced Series in Mathematical Physics Vol. 29, 2nd ed. (
World Scientific Publishing Co. Pte., Ltd.
,
Hackensack, NJ
,
2013
).
19.
J.
Lepowsky
and
H.
Li
,
Introduction to Vertex Operator Algebras and Their Representations
, Progress in Mathematics Vol. 227 (
Birkhäuser Boston
,
Boston, MA
,
2004
).
20.
J.
Lepowsky
and
R. L.
Wilson
, “
The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities
,”
Invent. Math.
77
(
2
),
199
290
(
1984
).
21.
I. B.
Frenkel
and
V. G.
Kac
, “
Basic representations of affine Lie algebras and dual resonance models
,”
Invent. Math.
62
,
23
66
(
1980
).
22.
S.
Berman
,
Y.
Billig
, and
J.
Szmigielski
, “
Vertex operator algebras and the representation theory of toroidal algebras
,” in
Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field Theory (Charlottesville, VA, 2000)
, Contemporary Mathematics Vol. 297 (
American Mathematical Society
,
Providence, RI
,
2002
), pp.
1
26
.
23.
V. G.
Kac
,
D. A.
Kazhdan
,
J.
Lepowsky
, and
R. L.
Wilson
, “
Realization of the basic representations of the Euclidean Lie algebras
,”
Adv. Math.
42
,
83
112
(
1981
).
24.
J.
Lepowsky
and
R. L.
Wilson
, “
Construction of the affine Lie algebra A1(1)
,”
Commun. Math. Phys.
62
,
43
53
(
1978
).
25.
T.
Gannon
, “
Moonshine beyond the Monster
,” in
The Bridge Connecting Algebra, Modular Forms and Physics
, Cambridge Monographs on Mathematical Physics (
Cambridge University Press
,
Cambridge
,
2006
).
26.
B.
Bakalov
and
V. G.
Kac
, “
Twisted modules over lattice vertex algebras
,” in
Lie Theory and its Applications in Physics
(
World Scientific Publishing
,
River Edge, NJ
,
2004
), Vols. 3 and 26.
27.
C. Y.
Dong
, “
Twisted modules for vertex algebras associated with even lattices
,”
J. Algebra
165
,
91
112
(
1994
).
28.
A. J.
Feingold
,
I. B.
Frenkel
, and
J. F. X.
Ries
, Spinor Construction of Vertex Operator Algebras, Triality, and E8(1), Contemporary Mathematics Vol. 121 (
American Mathematical Society
,
Providence, RI
,
1991
).
29.
J.
Lepowsky
, “
Calculus of twisted vertex operators
,”
Proc. Nat. Acad. Sci. U. S. A.
82
,
8295
8299
(
1985
).
30.
S.
Berman
and
Y.
Billig
, “
Irreducible representations for toroidal Lie algebras
,”
J. Algebra
221
,
188
231
(
1999
).
31.
S.
Berman
and
Y.
Krylyuk
, “
Universal central extensions of twisted and untwisted Lie algebras extended over commutative rings
,”
J. Algebra
173
(
2
),
302
347
(
1995
).
32.
I. B.
Frenkel
,
Y.-Z.
Huang
, and
J.
Lepowsky
,
On Axiomatic Approaches to Vertex Operator Algebras and Modules
, Memoirs of the American Mathematical Society, Vol. 104, No. 494 (
American Mathematical Society
,
1993
).
33.
B.
Bakalov
and
J.
Elsinger
, “
Orbifolds of lattice vertex algebras under an isometry of order two
,”
J. Algebra
441
,
57
83
(
2015
).
34.
I. B.
Frenkel
and
Y.
Zhu
, “
Vertex operator algebras associated to representations of affine and Virasoro algebras
,”
Duke Math. J.
66
(
1
),
123
168
(
1992
).
35.
V. G.
Kac
and
I. T.
Todorov
, “
Affine orbifolds and rational conformal field theory extensions of W1+∞
,”
Commun. Math. Phys.
190
,
57
111
(
1997
).
36.
V. G.
Kac
and
D. H.
Peterson
,
112 Constructions of the Basic Representation of the Loop Group of E8, Symposium on Anomalies, Geometry, Topology (Chicago, IL, 1985)
(
World Scientific Publishing
,
Singapore
,
1985
), pp.
276
298
.
37.
D.
Bernard
and
J.
Thierry-Mieg
, “
Level one representations of the simple affine Kac–Moody algebras in their homogeneous gradations
,”
Commun. Math. Phys.
111
,
181
246
(
1987
).
38.
P.
Goddard
,
W.
Nahm
,
D.
Olive
, and
A.
Schwimmer
, “
Vertex operators for non-simply-laced algebras
,”
Commun. Math. Phys.
107
,
179
212
(
1986
).
39.
F.
ten Kroode
and
J.
van de Leur
, “
Level-one representations of the affine Lie algebra Bn(1)
,”
Acta Appl. Math.
31
(
1
),
1
73
(
1993
).
40.
K. C.
Misra
, “
Level one standard modules for affine symplectic Lie algebras
,”
Math. Ann.
287
(
2
),
287
302
(
1990
).
41.
K. C.
Misra
, “
Realization of the level one standard C̃2k+1-modules
,”
Trans. Am. Math. Soc.
321
(
2
),
483
504
(
1990
).
42.
Y.
Xu
and
C.
Jiang
, “
Vertex operators of G2(1) and Bl(1)
,”
J. Phys. A: Math. Gen.
23
(
14
),
3105
3121
(
1990
).
43.
C.
Kassel
, “
Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra
,” in
Proceedings of the Luminy Conference on Algebraic K-theory (Luminy, 1983)
[
J. Pure Appl. Algebra
34
(
2-3
),
265
275
(
1984
)].
44.
B.
Bakalov
and
M.
Sullivan
, “
Twisted logarithmic modules of lattice vertex algebras
,”
Trans. Am. Math. Soc.
371
,
7995
8027
(
2019
).
45.
Y.
Billig
and
M.
Lau
, “
Irreducible modules for extended affine Lie algebras
,”
J. Algebra
327
,
208
235
(
2011
).
You do not currently have access to this content.