Given a simple finite-dimensional Lie algebra and an automorphism of finite order, one defines the notion of a twisted toroidal Lie algebra. In this paper, we construct representations of twisted toroidal Lie algebras from twisted modules over affine and lattice vertex algebras.
REFERENCES
1.
R. V.
Moody
, S. E.
Rao
, and T.
Yokonuma
, “Toroidal Lie algebras and vertex representations
,” Geom. Dedicata
35
(1-3
), 283
–307
(1990
).2.
Y.
Billig
, “Principal vertex operator representations for toroidal Lie algebras
,” J. Math. Phys.
39
(7
), 3844
–3864
(1998
).3.
S.
Eswara Rao
and R. V.
Moody
, “Vertex representations for N-toroidal Lie algebras and a generalization of the Virasoro algebras
,” Commun. Math. Phys.
159
, 239
–264
(1994
).4.
M. A.
Fabbri
and R. V.
Moody
, “Irreducible representations of Virasoro-toroidal Lie algebras
,” Commun. Math. Phys.
159
, 1
–13
(1994
).5.
N.
Jing
and K. C.
Misra
, “Fermionic realization of toroidal Lie algebras of classical types
,” J. Algebra
324
, 183
–194
(2010
).6.
N.
Jing
, K. C.
Misra
, and C.
Xu
, “Bosonic realization of toroidal Lie algebras of classical types
,” Proc. Am. Math. Soc.
137
(11
), 3609
–3618
(2009
).7.
S.
Tan
, “Principal construction of the toroidal Lie algebra of type A1
,” Math. Zeit.
230
, 621
–657
(1999
).8.
S.
Tan
, “Vertex operator representations for toroidal Lie algebras of type Bl
,” Commun. Algebra
27
, 3593
–3618
(1999
).9.
V. G.
Kac
, Infinite-dimensional Lie Algebras
, 3rd ed. (Cambridge University Press
, Cambridge
, 1990
).10.
J.
Fu
and C.
Jiang
, “Integrable representations for the twisted full toroidal Lie algebras
,” J. Algebra
307
, 769
–794
(2007
).11.
B.
Allison
, S.
Berman
, and A.
Pianzola
, “Multiloop algebras, iterated loop algebras and extended affine Lie algebras of nullity 2
,” J. Eur. Math. Soc.
16
, 327
–385
(2014
).12.
F.
Chen
, N.
Jing
, F.
Kong
, and S.
Tan
, “Twisted toroidal Lie algebras and Moody–Rao–Yokonuma presentation
,” Sci. Chin. Math.
(published online) (2020
).13.
N.
Jing
, C. R.
Mangum
, and K. C.
Misra
, “On realization of some twisted toroidal Lie algebras
,” in Lie Algebras, Vertex Operator Algebras, and Related Topics
, Contemporary Mathematics Vol. 139–148 (American Mathematical Society
, Providence, RI
, 2017
).14.
R. E.
Borcherds
, “Vertex algebras, Kac–Moody algebras, and the Monster
,” Proc. Natl. Acad. Sci. U. S. A.
83
, 3068
–3071
(1986
).15.
E.
Frenkel
and D.
Ben-Zvi
, Vertex Algebras and Algebraic Curves
, Mathematical Surveys and Monographs Vol. 88 (American Mathematical Society
, Providence, RI
, 2001
); (2nd ed., 2004
).16.
I. B.
Frenkel
, J.
Lepowsky
, and A.
Meurman
, Vertex Operator Algebras and the Monster
, Pure and Appl. Mathematics Vol. 134 (Academic Press
, Boston
, 1988
).17.
V. G.
Kac
, Vertex Algebras for Beginners
, University Lecture Series Vol. 10, 2nd ed. (American Mathematical Society
, 1998
).18.
V. G.
Kac
, A. K.
Raina
, and N.
Rozhkovskaya
, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras
, Advanced Series in Mathematical Physics Vol. 29, 2nd ed. (World Scientific Publishing Co. Pte., Ltd.
, Hackensack, NJ
, 2013
).19.
J.
Lepowsky
and H.
Li
, Introduction to Vertex Operator Algebras and Their Representations
, Progress in Mathematics Vol. 227 (Birkhäuser Boston
, Boston, MA
, 2004
).20.
J.
Lepowsky
and R. L.
Wilson
, “The structure of standard modules. I. Universal algebras and the Rogers-Ramanujan identities
,” Invent. Math.
77
(2
), 199
–290
(1984
).21.
I. B.
Frenkel
and V. G.
Kac
, “Basic representations of affine Lie algebras and dual resonance models
,” Invent. Math.
62
, 23
–66
(1980
).22.
S.
Berman
, Y.
Billig
, and J.
Szmigielski
, “Vertex operator algebras and the representation theory of toroidal algebras
,” in Recent Developments in Infinite-Dimensional Lie Algebras and Conformal Field Theory (Charlottesville, VA, 2000)
, Contemporary Mathematics Vol. 297 (American Mathematical Society
, Providence, RI
, 2002
), pp. 1
–26
.23.
V. G.
Kac
, D. A.
Kazhdan
, J.
Lepowsky
, and R. L.
Wilson
, “Realization of the basic representations of the Euclidean Lie algebras
,” Adv. Math.
42
, 83
–112
(1981
).24.
J.
Lepowsky
and R. L.
Wilson
, “Construction of the affine Lie algebra
,” Commun. Math. Phys.
62
, 43
–53
(1978
).25.
T.
Gannon
, “Moonshine beyond the Monster
,” in The Bridge Connecting Algebra, Modular Forms and Physics
, Cambridge Monographs on Mathematical Physics (Cambridge University Press
, Cambridge
, 2006
).26.
B.
Bakalov
and V. G.
Kac
, “Twisted modules over lattice vertex algebras
,” in Lie Theory and its Applications in Physics
(World Scientific Publishing
, River Edge, NJ
, 2004
), Vols. 3 and 26.27.
C. Y.
Dong
, “Twisted modules for vertex algebras associated with even lattices
,” J. Algebra
165
, 91
–112
(1994
).28.
A. J.
Feingold
, I. B.
Frenkel
, and J. F. X.
Ries
, Spinor Construction of Vertex Operator Algebras, Triality, and , Contemporary Mathematics Vol. 121 (American Mathematical Society
, Providence, RI
, 1991
).29.
J.
Lepowsky
, “Calculus of twisted vertex operators
,” Proc. Nat. Acad. Sci. U. S. A.
82
, 8295
–8299
(1985
).30.
S.
Berman
and Y.
Billig
, “Irreducible representations for toroidal Lie algebras
,” J. Algebra
221
, 188
–231
(1999
).31.
S.
Berman
and Y.
Krylyuk
, “Universal central extensions of twisted and untwisted Lie algebras extended over commutative rings
,” J. Algebra
173
(2
), 302
–347
(1995
).32.
I. B.
Frenkel
, Y.-Z.
Huang
, and J.
Lepowsky
, On Axiomatic Approaches to Vertex Operator Algebras and Modules
, Memoirs of the American Mathematical Society, Vol. 104, No. 494 (American Mathematical Society
, 1993
).33.
B.
Bakalov
and J.
Elsinger
, “Orbifolds of lattice vertex algebras under an isometry of order two
,” J. Algebra
441
, 57
–83
(2015
).34.
I. B.
Frenkel
and Y.
Zhu
, “Vertex operator algebras associated to representations of affine and Virasoro algebras
,” Duke Math. J.
66
(1
), 123
–168
(1992
).35.
V. G.
Kac
and I. T.
Todorov
, “Affine orbifolds and rational conformal field theory extensions of W1+∞
,” Commun. Math. Phys.
190
, 57
–111
(1997
).36.
V. G.
Kac
and D. H.
Peterson
, 112 Constructions of the Basic Representation of the Loop Group of E8, Symposium on Anomalies, Geometry, Topology (Chicago, IL, 1985)
(World Scientific Publishing
, Singapore
, 1985
), pp. 276
–298
.37.
D.
Bernard
and J.
Thierry-Mieg
, “Level one representations of the simple affine Kac–Moody algebras in their homogeneous gradations
,” Commun. Math. Phys.
111
, 181
–246
(1987
).38.
P.
Goddard
, W.
Nahm
, D.
Olive
, and A.
Schwimmer
, “Vertex operators for non-simply-laced algebras
,” Commun. Math. Phys.
107
, 179
–212
(1986
).39.
F.
ten Kroode
and J.
van de Leur
, “Level-one representations of the affine Lie algebra
,” Acta Appl. Math.
31
(1
), 1
–73
(1993
).40.
K. C.
Misra
, “Level one standard modules for affine symplectic Lie algebras
,” Math. Ann.
287
(2
), 287
–302
(1990
).41.
K. C.
Misra
, “Realization of the level one standard -modules
,” Trans. Am. Math. Soc.
321
(2
), 483
–504
(1990
).42.
Y.
Xu
and C.
Jiang
, “Vertex operators of and
,” J. Phys. A: Math. Gen.
23
(14
), 3105
–3121
(1990
).43.
C.
Kassel
, “Kähler differentials and coverings of complex simple Lie algebras extended over a commutative algebra
,” in Proceedings of the Luminy Conference on Algebraic K-theory (Luminy, 1983)
[J. Pure Appl. Algebra
34
(2-3
), 265
–275
(1984
)].44.
B.
Bakalov
and M.
Sullivan
, “Twisted logarithmic modules of lattice vertex algebras
,” Trans. Am. Math. Soc.
371
, 7995
–8027
(2019
).45.
Y.
Billig
and M.
Lau
, “Irreducible modules for extended affine Lie algebras
,” J. Algebra
327
, 208
–235
(2011
).© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.