We consider the mass-critical nonlinear fourth-order Schrödinger equations with random initial data. We prove almost sure local well-posedness and probabilistic small data global well-posedness below L2-space. We also prove probabilistic blow-up for the equation with non-gauge invariance and rough random initial data.

1.
M.
Ben-Artzi
,
H.
Koch
, and
J. C.
Saut
, “
Dispersion estimates for fourth-order Schrödinger equations
,”
C. R. Acad. Sci.
330
(
1
),
87
92
(
2000
).
2.
A.
Bényi
,
T.
Oh
, and
O.
Pocovnicu
, “
Wiener randomization on unbounded domains and an application to almost sure well-posedness of NLS
,” in
Excursions in Harmonic Analysis, Volume 4, Applied and Numerical Harmonic Analysis
(
Birkhäuser, Cham
,
2015
), pp.
3
25
.
3.
A.
Bényi
,
T.
Oh
, and
O.
Pocovnicu
, “
On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on Rd,d3
,”
Trans. Am. Math. Soc., Ser. B
2
,
1
50
(
2015
).
4.
Á.
Bényi
,
T.
Oh
, and
O.
Pocovnicu
, “
Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on R3
,”
Trans. Am. Math. Soc., Ser. B
6
(
4
),
114
160
(
2019
).
5.
T.
Boulenger
and
E.
Lenzmann
, “
Blowup for biharmonic NL4S
,”
Ann. Sci. Éc. Norm. Supér.
50
(
3
),
503
544
(
2017
).
6.
J.
Bourgain
, “
Invariant measures for the 2D-defocusing nonlinear Schrödinger equation
,”
Commun. Math. Phys.
176
(
2
),
421
445
(
1996
).
7.
N.
Burq
and
N.
Tzvetkov
, “
Random data Cauchy theory for supercritical wave equations. I. Local theory
,”
Invent. Math.
173
(
3
),
449
475
(
2008
).
8.
N.
Burq
,
L.
Thomann
, and
N.
Tzvetkov
, “
Long time dynamics for the one dimensional nonlinear Schrödinger equation
,”
Ann. Inst. Fourier
63
(
6
),
2137
2198
(
2013
).
9.
T.
Cazenave
,
Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics Vol. 10
(
American Mathematical Society; Courant Institute of Mathematical Sciences
,
2003
).
10.
M.
Chen
and
S.
Zhang
, “
Random data Cauchy problem for the fourth order Schrödinger equation with the second order derivative nonlinearities
,”
Nonlinear Anal.
190
,
111608
(
2020
).
11.
Y.
Cho
and
S.
Lee
, “
Strichartz estimates in spherical coordinates
,”
Indiana Univ. Math. J.
62
(
3
),
991
1020
(
2013
).
12.
Y.
Deng
, “
Two-dimensional nonlinear Schrödinger equation with random radial data
,”
Anal. PDE
5
(
5
),
913
960
(
2012
).
13.
V. D.
Dinh
, “
Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces
,”
Int. J. Appl. Math.
31
(
4
),
483
535
(
2018
).
14.
V. D.
Dinh
, “
On well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation
,”
Bull. Belg. Math. Soc. Simon Stevin
25
(
3
),
415
437
(
2018
).
15.
V. D.
Dinh
, “
Global existence and scattering for a class of nonlinear fourth-order Schrödinger equation below the energy space
,”
Nonlinear Anal.
172
,
115
140
(
2018
).
16.
V. D.
Dinh
, “
On blowup solutions to the focusing intercritical nonlinear fourth-order Schrödinger equation
,”
J. Dyn. Differ. Equations
31
(
4
),
1793
1823
(
2019
).
17.
V. D.
Dinh
, “
Dynamics of radial solutions for the focusing fourth-order nonlinear Schrödinger equations
,”
Nonlinearity
34
,
776
(
2021
).
18.
V. D.
Dinh
, “
Random data theory for the cubic fourth-order nonlinear Schrödinger equation
,”
Commun. Pure Appl. Anal.
20
(
2
),
651
680
(
2021
).
19.
B.
Dodson
,
J.
Lührmann
, and
D.
Mendelson
, “
Almost sure local well-posedness and scattering for the 4D cubic nonlinear Schrödinger equation
,”
Adv. Math.
347
,
619
676
(
2019
).
20.
Q.
Guo
, “
Scattering for the focusing L2-supercritical and Ḣ2-subcritical biharmonic NLS equations
,”
Commun. Partial Differ. Equations
41
(
2
),
185
207
(
2016
).
21.
Z.
Guo
and
Y.
Wang
, “
Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations
,”
J. Anal. Math.
124
(
1
),
1
38
(
2014
).
22.
H.
Hirayama
and
M.
Okamoto
, “
Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity
,”
Discrete Contin. Dyn. Syst.
36
(
12
),
6943
6974
(
2016
).
23.
H.
Hirayama
and
M.
Okamoto
, “
Random data Cauchy theory for the fourth order nonlinear Schrödinger equation with cubic nonlinearity
,” arXiv:1505.06497 (
2015
).
24.
Z.
Huo
and
Y.
Jia
, “
The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament
,”
J. Differ. Equations
214
,
1
35
(
2005
).
25.
G.
Hwang
, “
Probabilistic well-posedness of the mass-critical NLS with radial data below L2(Rd)
,”
J. Math. Anal. Appl.
475
,
1842
1854
(
2019
).
26.
M.
Ikeda
and
T.
Inui
, “
Some non-existence results for semilinear Schrödinger equation without gauge invariance
,”
J. Math. Anal. Appl.
425
,
758
773
(
2015
).
27.
M.
Ikeda
and
Y.
Wakasugi
, “
Small data blow-up of L2-solution for the nonlinear Schrödinger equation without gauge invariance
,”
Differ. Int. Equations
26
(
11/12
),
1265
1285
(
2013
), available at http://projecteuclid.org/euclid.die/1378327426.
28.
V. I.
Karpman
, “
Stabiliztion of solition instabilities by higher-order dispersion: Fourth order nonlinear Schrödinger-type equations
,”
Phys. Rev. E
53
(
2
),
1336
1339
(
1996
).
29.
V. I.
Karpman
and
A. G.
Shagalov
, “
Stability of solition described by nonlinear Schrödinger-type equations with higher-order dispersion
,”
Physica D
144
,
194
210
(
2000
).
30.
Y.
Ke
, “
Remark on the Strichartz estimates in the radial case
,”
J. Math. Anal. Appl.
387
,
857
861
(
2012
).
31.
R.
Killip
,
J.
Murphy
, and
M.
Visan
, “
Almost sure scattering for the energy-critical NLS with radial data below H1(R4)
,”
Commun. Partial Differ. Equations
44
(
1
),
51
71
(
2019
).
32.
J.
Lührmann
and
D.
Mendelson
, “
Random data Cauchy theory for the nonlinear wave equations of power-type on R3
,”
Commun. Partial Differ. Equations
39
(
12
),
2262
2283
(
2014
).
33.
C.
Miao
,
G.
Xu
, and
L.
Zhao
, “
Global well-posedness and scattering for the defocusing energy critical nonlinear Schrödinger equation of fourth order in the radial case
,”
J. Differ. Equations
246
,
3715
3749
(
2009
).
34.
C.
Miao
,
G.
Xu
, and
L.
Zhao
, “
Global well-posedness and scattering for the focusing energy critical nonlinear Schrödinger equations of fourth order in dimensions d ≥ 9
,”
J. Differ. Equations
251
,
3381
3402
(
2011
).
35.
C.
Miao
,
H.
Wu
, and
J.
Zhang
, “
Scattering theory below energy for the cubic fourth-order Schrödinger equation
,”
Math. Narchr.
288
(
7
),
798
823
(
2015
).
36.
T.
Oh
,
M.
Okamoto
, and
O.
Pocovnicu
, “
On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities
,”
Discrete Contin. Dyn. Syst.
39
(
6
),
3479
3520
(
2019
).
37.
B.
Pausader
, “
Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case
,”
Dyn. Partial Differ. Equations
4
(
3
),
197
225
(
2007
).
38.
B.
Pausader
, “
The focusing energy-critical fourth-order Schrödinger equation with radial data
,”
Discrete Contin. Dyn. Syst.
24
,
1275
1292
(
2009
).
39.
B.
Pausader
, “
The cubic fourth-order Schrödinger equation
,”
J. Funct. Anal.
256
,
2473
2517
(
2009
).
40.
B.
Pausader
and
S.
Shao
, “
The mass-critical fourth-order Schrödinger equation in high dimensions
,”
J. Hyper. Differ. Equations
07
,
651
705
(
2010
).
41.
B.
Pausader
and
S.
Xia
, “
Scattering theory for the fourth-order Schrödinger equation in low dimensions
,”
Nonlinearity
26
,
2175
2191
(
2013
).
42.
S.
Zhang
and
S.
Xu
, “
The probabilistic Cauchy problem for the fourth order Schrödinger equation with special derivative nonlinearities
,”
Commun. Pure Appl. Anal.
19
(
6
),
3367
3385
(
2020
).
43.
S.
Zhu
,
H.
Yang
, and
J.
Zhang
, “
Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrödinger equation
,”
Dyn. Partial Differ. Equations
7
,
187
205
(
2010
).
You do not currently have access to this content.