With techniques borrowed from quantum information theory, we develop a method to systematically obtain operator inequalities and identities in several matrix variables. These take the form of trace polynomials: polynomial-like expressions that involve matrix monomials Xα1,,Xαr and their traces tr(Xα1,,Xαr). Our method rests on translating the action of the symmetric group on tensor product spaces into that of matrix multiplication. As a result, we extend the polarized Cayley–Hamilton identity to an operator inequality on the positive cone, characterize the set of multilinear equivariant positive maps in terms of Werner state witnesses, and construct permutation polynomials and tensor polynomial identities on tensor product spaces. We give connections to concepts in quantum information theory and invariant theory.

1.
J. W.
Helton
and
M.
Putinar
, “
Positive polynomials in scalar and matrix variables, the spectral theorem and optimization
,” arXiv:math/0612103 (
2006
).
2.
Semidefinite Optimization and Convex Alegbraic Geometry
, MOS-SIAM Series on Optimization, edited by
G.
Blekherman
,
P. A.
Parrilo
, and
R. R.
Thomas
(
SIAM
,
2012
).
3.
J. W.
Helton
and
S. A.
McCullough
,
Trans. Am. Math. Soc.
356
,
3721
(
2004
).
4.
I.
Klep
and
M.
Schweighofer
,
Adv. Math.
217
,
1816
(
2008
).
5.
A. C.
Doherty
,
P. A.
Parrilo
, and
F. M.
Spedalieri
,
Phys. Rev. A
69
,
022308
(
2004
).
6.
S.
Pironio
,
M.
Navascués
, and
A.
Acín
,
SIAM J. Opt.
20
,
2157
(
2010
).
7.
S.
Burgdorf
,
I.
Klep
, and
J.
Povh
,
Optimization of Polynomials in Non-Commuting Variables
, SpringerBriefs in Mathematics (
Springer International Publishing
,
2016
).
8.
J. W.
Helton
,
Ann. Math.
156
,
675
(
2002
).
9.
M.
Christandl
,
A.
Müller-Hermes
, and
M. M.
Wolf
,
Ann. Henri Poincaré
20
,
2295
(
2019
).
10.
M.
Lewenstein
,
R.
Augusiak
,
D.
Chruściński
,
S.
Rana
, and
J.
Samsonowicz
,
Phys. Rev. A
93
,
042335
(
2016
).
11.
A.
Müller-Hermes
,
J. Math. Phys.
59
,
102203
(
2018
).
12.
J. K.
Korbicz
,
M. L.
Almeida
,
J.
Bae
,
M.
Lewenstein
, and
A.
Acín
,
Phys. Rev. A
78
,
062105
(
2008
).
13.
A.
Müller-Hermes
,
D.
Reeb
, and
M. M.
Wolf
,
J. Math. Phys.
57
,
015202
(
2016
).
14.
M.
Huber
and
R.
Sengupta
,
Phys. Rev. Lett.
113
,
100501
(
2014
).
15.
F.
Clivaz
,
M.
Huber
,
L.
Lami
, and
G.
Murta
,
J. Math. Phys.
58
,
082201
(
2017
).
16.
N.
Johnston
,
B.
Lovitz
, and
D.
Puzzuoli
,
Quantum
3
,
172
(
2019
).
17.
P.
Rungta
,
V.
Bužek
,
C. M.
Caves
,
M.
Hillery
, and
G. J.
Milburn
,
Phys. Rev. A
64
,
042315
(
2001
).
18.
19.
P.
Butterley
,
A.
Sudbery
, and
J.
Szulc
,
Found. Phys.
36
,
83
(
2006
).
20.
21.
C.
Eltschka
and
J.
Siewert
,
Quantum
2
,
64
(
2018
).
22.
C.
Eltschka
,
F.
Huber
,
O.
Gühne
, and
J.
Siewert
,
Phys. Rev. A
98
,
052317
(
2018
).
23.
E. M.
Rains
,
IEEE Trans. Inf. Theory
44
,
134
(
1998
).
24.
E. M.
Rains
,
IEEE Trans. Inf. Theory
45
,
2361
(
1999
).
25.
E. M.
Rains
,
IEEE Trans. Inf. Theory
46
,
54
(
2000
).
26.
E. M.
Rains
,
IEEE Trans. Inf. Theory
44
,
1388
(
1998
).
27.
F.
Huber
,
C.
Eltschka
,
J.
Siewert
, and
O.
Gühne
,
J. Phys. A: Math. Theor.
51
,
175301
(
2018
).
28.
F.
Huber
and
M.
Grassl
,
Quantum
4
,
284
(
2020
).
29.
F.
Huber
, “
Quantum states and their marginals: From multipartite entanglement to quantum error-correcting codes
,” Ph.D. thesis,
Universität Siegen
,
2017
.
30.
S.
Designolle
,
M.
Farkas
, and
J.
Kaniewski
,
New J. Phys.
21
,
113053
(
2019
).
31.
M.
Navascués
,
A.
Feix
,
M.
Araújo
, and
T.
Vértesi
,
Phys. Rev. A
92
,
042117
(
2015
).
32.
M.
Navascues
and
T.
Vertesi
,
Quantum
2
,
50
(
2018
).
33.
D.
Trillo
,
B.
Dive
, and
M.
Navascués
,
Quantum
4
,
374
(
2020
).
34.
M.
Navascués
,
Phys. Rev. X
8
,
031008
(
2018
).
35.
E.
Formanek
,
Math. Intell.
11
,
37
(
1989
).
36.
V.
Drensky
and
E.
Formanek
,
Polynomial Identity Rings
, Advanced Courses in Mathematics - CRM Barcelona (
Birkhäuser
,
Basel
,
2004
).
37.
C. D.
Concini
and
C.
Procesi
,
The Invariant Theory of Matrices
, University Lecture Series Vol. 69 (
American Mathematical Society
,
2017
).
38.
I.
Klep
,
Š.
Špenko
, and
J.
Volčič
,
Proc. London Math. Soc.
117
,
1101
(
2018
).
39.
I.
Klep
,
V.
Magron
, and
J.
Volčič
, “
Optimization over trace polynomials
,” arXiv:2006.12510 (
2020
).
40.
J.
Lew
,
J. Appl. Math. Phys.
17
,
650
(
1966
).
41.
B.
Kostant
, “
A theorem of Frobenius: A theorem of Amitsur-Levitski and Cohomology theory
,” in
Collected Papers: Volume I 1955–1966
, edited by
A.
Joseph
,
S.
Kumar
, and
M.
Vergne
(
Springer New York
,
New York, NY
,
2009
), pp.
64
91
.
42.
R. F.
Werner
and
A. S.
Holevo
,
J. Math. Phys.
43
,
4353
(
2002
).
43.
P.
Hayden
and
A.
Winter
,
Commun. Math. Phys.
284
,
263
280
(
2008
).
44.
N. J.
Cerf
,
C.
Adami
, and
R. M.
Gingrich
,
Phys. Rev. A
60
,
898
(
1999
).
45.
M.
Horodecki
and
P.
Horodecki
,
Phys. Rev. A
59
,
4206
(
1999
).
46.
F.
Mintert
and
A.
Buchleitner
,
Phys. Rev. Lett.
98
,
140505
(
2007
).
47.
F.
Mintert
,
M.
Kuś
, and
A.
Buchleitner
,
Phys. Rev. Lett.
95
,
260502
(
2005
).
48.
M.
Huber
,
F.
Mintert
,
A.
Gabriel
, and
B. C.
Hiesmayr
,
Phys. Rev. Lett.
104
,
210501
(
2010
).
49.
S. J.
van Enk
and
C. W. J.
Beenakker
,
Phys. Rev. Lett.
108
,
110503
(
2012
).
50.
A.
Elben
,
B.
Vermersch
,
C. F.
Roos
, and
P.
Zoller
,
Phys. Rev. A
99
,
052323
(
2019
).
51.
A.
Benavoli
,
A.
Facchini
, and
M.
Zaffalon
,
Phys. Rev. A
94
,
042106
(
2016
).
52.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
, 2nd ed. (
Cambridge University Press
,
2012
).
53.

In terms of character theory, this is the case if and only if every character is real-valued.

54.
K. M.
Audenaert
, “
A digest on representation theory of the symmetric group
” (unpublished) (
2006
).
55.

The operators corresponding to Young symmetrizers are usually neither Hermitian nor central.

56.
S.
Szalay
,
J. Phys. A: Math. Theor.
45
,
065302
(
2012
).
57.
J. C.
Bridgeman
and
C. T.
Chubb
,
J. Phys. A: Math. Theor.
50
,
223001
(
2017
).
58.
J. P.
Razmyslov
,
Math. USSR-Izvestiya
8
,
727
(
1974
).
60.

If X1, …, Xk−1 is not Hermitian, then fλ is not necessarily Hermitian either. However, the equivariance of fλ still holds.

61.
J.
Alcock-Zeilinger
and
H.
Weigert
,
J. Math. Phys.
58
,
051702
(
2017
).
62.
H.-P.
Breuer
,
Phys. Rev. Lett.
97
,
080501
(
2006
).
63.
W.
Hall
,
J. Phys. A: Math. Gen.
39
,
014119
(
2006
).
64.
L.
Lami
and
M.
Huber
,
J. Math. Phys.
57
,
092201
(
2016
).
65.
M.
Mozrzymas
,
M.
Studziński
, and
N.
Datta
,
J. Math. Phys.
58
,
052204
(
2017
).
66.
I.
Bardet
,
B.
Collins
, and
G.
Sapra
,
Ann. Henri Poincaré
21
,
3385
(
2020
).
67.
M.
Horodecki
,
P.
Horodecki
, and
R.
Horodecki
,
Phys. Lett. A
283
,
1
(
2001
).
68.
K. H.
Han
and
S.-H.
Kye
,
J. Math. Phys.
57
,
015205
(
2016
).
69.
S.-H.
Kye
,
J. Phys. A: Math. Theor.
48
,
235303
(
2015
).
70.
T.
Eggeling
and
R. F.
Werner
,
Phys. Rev. A
63
,
042111
(
2001
).
71.
H.
Maassen
and
B.
Kümmerer
, “
Entanglement of symmetric Werner states
,”
2019
, available online at http://www.bjadres.nl/MathQuantWorkshop/Slides/SymmWernerHandout.pdf.
72.
C.
Nguyen
and
D.
Gross
, private communication (
2019
).
73.
B.
Reznick
, “
Some concrete aspects of Hilbert’s 17th Problem
,” in
Real Algebraic Geometry and Ordered Structures
, Contemporary Mathematics Vol. 253 (
American Mathematical Society
,
2000
), pp.
251
272
.
74.
A. S.
Amitsur
and
J.
Levitzki
,
Proc. Am. Math. Soc.
1
,
449
(
1950
).
75.
F.
Huber
and
C.
Procesi
, “
Tensor polynomial identities
,”
Isr. J. Math.
(in press); arXiv:2011.04362 [math.RA].
76.
C.
Procesi
, “
Tensor fundamental theorems of invariant theory
,” arXiv:2011.10820 [math.RT] (
2020
).
77.
P.
Horodecki
,
L.
Rudnicki
, and
K.
Życzkowski
, “
Five open problems in quantum information
,” arXiv:2002.03233 [quant-ph] (
2020
).
78.
G.
James
and
M.
Liebeck
,
Representations and Characters of Groups
, 2nd ed. (
Cambridge University Press
,
2001
).
79.
W.
Fulton
and
J.
Harris
,
Representation Theory: A First Course
, Readings in Mathematics (
Springer-Verlag
,
New York
,
2004
).
80.
G.
Gill
, “
Representation theory of the symmetric group: Basic elements
,”
2005
, available online at http://www.math.toronto.edu/murnaghan/courses/mat445/Symmetric.pdf.
81.
P.
Webb
,
A Course in Finite Group Representation Theory
, Cambridge Studies in Advanced Mathematics (
Cambridge University Press
,
2016
).
82.
A.
Bartel
, “
Introduction to representation theory of finite groups
,”
2017
, available online at http://www.maths.gla.ac.uk/∼abartel/docs/reptheory.pdf.
83.
GAP
, GAP—Groups, Algorithms, and programming, version 4.10.2,
The GAP Group
,
2019
.
You do not currently have access to this content.