This paper surveys recent progress in the analysis of nonlinear partial differential equations using Anderson localization and semi-algebraic sets method. We discuss the application of these tools from linear analysis to nonlinear equations such as the nonlinear Schrödinger equations, the nonlinear Klein–Gordon equations (nonlinear wave equations), and the nonlinear random Schrödinger equations on the lattice. We also review the related linear time-dependent problems.

1.
H.
Abdul-Rahman
,
B.
Nachtergaele
,
R.
Sims
, and
G.
Stolz
, “
Localization properties of the XY spin chain: A review of mathematical results with an eye toward many-body localization
,”
Ann. Phys.
529
(
7
),
1600280
(
2017
).
2.
W.-M.
Wang
, “
Energy supercritical nonlinear Schrödinger equations: Quasi-periodic solutions
,”
Duke Math. J.
165
(
6
),
1129
1192
(
2016
).
3.
W.-M.
Wang
, “
Quasi-periodic solutions for nonlinear Klein-Gordon equations
,” arXiv:1609.00309v3 (
2020
).
4.
J.
Bourgain
and
M.
Goldstein
, “
On nonperturbative localization with quasi-periodic potential
,”
Ann. Math.
152
,
835
879
(
2000
).
5.
J.
Bourgain
,
M.
Goldstein
, and
W.
Schlag
, “
Anderson localization for Schrödinger operators on Z2 with quasi-periodic potential
,”
Acta Math.
188
,
41
86
(
2002
).
6.
J.
Bourgain
,
Green’s Function Estimates for Lattice Schrödinger Operators and Applications
, Annals of Mathematics Studies Vol. 158 (
Princeton University Press
,
Princeton, NJ
,
2005
).
7.
J.
Bourgain
, “
Anderson localization for quasi-periodic lattice Schrödinger operators on Zd, d arbitrary
,”
Geom. Funct. Anal.
17
,
682
706
(
2007
).
8.
W.-M.
Wang
, “
Space quasi-periodic standing waves for nonlinear Schrödinger equations
,”
Commun. Math. Phys.
378
(
2
),
783
806
(
2020
).
9.
W.-M.
Wang
, “
Infinite energy quasi-periodic solutions to nonlinear Schrödinger equations on R
,” arXiv: 1908.11627 (
2020
).
10.
J.
Fröhlich
and
T.
Spencer
, “
Absence of diffusion in the Anderson tight binding model for large disorder or low energy
,”
Commun. Math. Phys.
88
,
151
184
(
1983
).
11.
J.
Fröhlich
,
T.
Spencer
, and
P.
Wittwer
, “
Localization for a class of one dimensional quasi-periodic Schrödinger operators
,”
Commun. Math. Phys.
132
,
5
25
(
1990
).
12.
M.
Combescure
, “
The quantum stability problem for time-periodic perturbations of the harmonic oscillator
,”
Ann. Inst. Henri. Poincare Phys. Theor.
47
,
63
83
(
1987
).
13.
P.
Duclos
and
P.
Stovicek
, “
Floquet Hamiltonians with pure point spectrum
,”
Commun. Math. Phys.
177
,
327
347
(
1986
).
14.
W.-M.
Wang
, “
Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbation
,”
Commun. Math. Phys.
277
(
2
),
459
496
(
2008
).
15.
W.
Liu
, “
Quantitative inductive estimates for Green’s functions of non-self-adjoint matrices
,” arXiv: 2007.00578 (
2020
).
16.
B.
Grébert
and
E.
Paturel
, “
On reducibility of quantum harmonic oacillator on Rd with quasiperiodic in time potential
,”
Ann. Fac. Sci. Univ. Toulouse
28
(
5
),
977
1014
(
2019
).
17.
Z.
Liang
and
Z.
Wang
, “
Reducibility of quantum harmonic oscillator on Rd with differential and quasi-periodic in time potential
,”
J. Differ. Equations
267
,
3355
3395
(
2019
).
18.
L. H.
Eliasson
and
S. B.
Kuksin
, “
On reducibility of Schrödinger equations with quasi-periodic potentials
,”
Commun. Math. Phys.
286
(
1
),
125
135
(
2009
).
19.
J.
Bourgain
and
W.-M.
Wang
, “
Anderson localization for time quasi-periodic random Schrödinger and wave equations
,”
Commun. Math. Phys.
248
,
429
466
(
2004
).
20.
J.
Bourgain
, “
On growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potential
,”
J. Anal. Math.
77
,
315
348
(
1999
).
21.
W.-M.
Wang
, “
Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations
,”
Commun. PDE
33
(
10-12
),
2164
2179
(
2008
).
22.
J.-M.
Delort
, “
Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds
,”
Int. Math. Res. Not.
12
,
2305
2328
(
2010
).
23.
D.
Fang
and
Q.
Zhang
, “
On growth of Sobolev norms in linear Schrödinger equations with time dependent Gevrey potential
,”
J. Dyn. Differ. Equations
24
,
151
180
(
2012
).
24.
S.
Basu
, “
On bounding the Betti numbers and computing the Euler characteristics of semi-algebraic sets
,”
Discrete Comput. Geom.
22
(
1
),
1
18
(
1999
).
25.
G.
Binyamini
and
D.
Novikov
, “
Complex cellular structures
,”
Ann. Math.
190
,
145
248
(
2019
).
26.
W.
Craig
and
C. E.
Wayne
, “
Newton’s method and periodic solutions of nonlinear wave equation
,”
Commun. Pure Appl. Math.
46
,
1409
1498
(
1993
).
27.
J.
Colliander
,
M.
Keel
,
G.
Staffilani
,
H.
Takaoka
, and
T.
Tao
, “
Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation
,”
Invent. Math.
181
(
1
),
39
113
(
2010
).
28.
J.
Bourgain
, “
Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations
,”
Ann. Math.
148
,
363
439
(
1998
).
29.
L. H.
Eliasson
and
S. E.
Kuksin
, “
KAM for the nonlinear Schrödinger equation
,”
Ann. Math.
172
(
2
),
371
435
(
2010
).
30.
J.
Geng
,
X.
Xu
, and
J.
You
, “
An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation
,”
Adv. Math.
226
,
5361
5402
(
2011
).
31.
C.
Procesi
and
M.
Procesi
, “
A KAM algorithm for the resonant non-linear Schrödinger equation
,”
Adv. Math.
272
,
399
470
(
2015
).
32.
S.
Kuksin
, “
Hamiltonian perturbation of infinite-dimensional linear systems with imaginary spectrum
Funkts. Anal. I Prilozhen
21
,
22
37
(
1987
).
33.
C. E.
Wayne
, “
Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory
,”
Commun. Math. Phys.
127
,
479
528
(
1990
).
34.
J.
Pöschel
, “
Quasi-periodic solutions for a nonlinear wave equation
,”
Comment. Math. Helvetici
71
,
269
296
(
1996
).
35.
J.
Bourgain
, “
Construction of periodic solutions of nonlinear wave equations in higher dimensions
,”
Geom. Func. Anal.
5
,
363
439
(
1995
).
36.
L.
Chierchia
and
J.
You
, “
KAM tori for 1D nonlinear wave equations with periodic boundary conditions
,”
Commun. Math. Phys.
211
,
497
525
(
2000
).
37.
M.
Berti
and
P.
Bolle
, “
Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential
,”
Nonlinearity
25
,
2579
2613
(
2012
).
38.
D.
Damanik
and
M.
Goldstein
, “
On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data
,”
J. Am. Math. Soc.
29
,
825
856
(
2016
).
39.
S.
Jitomyrskaya
,
W.
Liu
, and
Y.
Shi
, “
Anderson localization for multi-frequency quasi-periodic operators on Zd
,”
Geom. Func. Anal.
30
(
2
),
457
481
(
2020
).
40.
J.
Bourgain
and
I.
Kachkovskiy
, “
Anderson localization for two interacting quasiperiodic particles
,”
Geom. Funct. Anal.
29
(
1
),
3
43
(
2019
).
41.
J.
Geng
,
J.
You
, and
Z.
Zhao
, “
Localization in one dimensional quasi-periodic nonlinear systems
,”
Geom. Func. Anal.
24
(
1
),
116
158
(
2014
).
42.
X.
Yuan
, “
KAM theorems and open problems for infinite-dimensional Hamiltonian with short range
,”
Sci. China Math.
57
(
7
),
1479
1486
(
2014
).
43.
J.
Bourgain
and
W.-M.
Wang
, “
Quasi-periodic solutions of nonlinear random Schrödinger equations
,”
J. Eur. Math. Soc.
10
,
1
45
(
2008
).
44.
T.
Oh
, “
Global existence for the defocusing nonlinear Schrödinger equations with limit periodic initial data
,”
Commun. Pure Appl. Math.
14
(
4
),
1563
1580
(
2015
).
45.
B.
Dodson
,
A.
Soffer
, and
T.
Spencer
, “
The nonlinear Schrödinger equation on Z and R with bounded initial data: Examples and conjectures
,”
J. Stat. Phys.
180
,
910
934
(
2020
).
46.
H.
von Dreifus
and
A.
Klein
, “
A new proof of localization in the Anderson tight binding model
,”
Commun. Math. Phys.
124
(
2
),
285
299
(
1989
).
47.
M.
Aizenman
and
S.
Molchanov
, “
Localization at large disorder and at extreme energies: An elementary derivation
,”
Commun. Math. Phys.
157
,
245
278
(
1993
).
48.
W.-M.
Wang
and
Z.
Zhang
, “
Long time Anderson localization for the nonlinear random Schrödinger equation
,”
J. Stat. Phys.
134
,
953
968
(
2009
), part of Special Issue on Festschrift in honor of the 60th birthdays of J. Fröhlich and T. Spencer.
49.
H.
Cong
,
Y.
Shi
, and
Z.
Zhang
, “
Long time Anderson localization for the nonlinear Schrödinger equation revisited
,”
J. Stat. Phys.
182
,
10
(
2021
).
50.
J.
Bourgain
and
W.-M.
Wang
, “
Diffusion bound for a nonlinear Schrödinger equation
,” in
Mathematical Aspect of Nonlinear Dispersive Equations
, Annals of Mathematics Studies Vol. 163 (
Princeton University Press
,
Princeton, NJ
,
2007
), pp.
21
42
51.
H.
Cong
and
Y.
Shi
, “
Diffusion bound for the nonlinear Anderson model
,” arXiv: 2008.10171 (
2020
).
52.
D.
Bambusi
and
B.
Grébert
, “
Birkhoff normal form for partial differential equations with tame modulus
,”
Duke Math. J.
135
(
3
),
507
567
(
2006
).
53.
J.
Fröhlich
,
T.
Spencer
, and
C. E.
Wayne
, “
Localization in disordered, nonlinear dynamical systems
,”
J. Stat. Phys.
42
(
3-4
),
247
274
(
1986
).
54.
S.
Fishman
,
Y.
Krivolapov
, and
A.
Soffer
, “
On the problem of dynamical localization in the nonlinear Schrödinger equation with a random potential
,”
J. Stat. Phys.
131
(
5
),
843
865
(
2008
).
55.
J.
Bourgain
, “
On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE
,”
Int. Math. Res. Not.
1996
(
6
),
277
304
.
You do not currently have access to this content.