This paper surveys recent progress in the analysis of nonlinear partial differential equations using Anderson localization and semi-algebraic sets method. We discuss the application of these tools from linear analysis to nonlinear equations such as the nonlinear Schrödinger equations, the nonlinear Klein–Gordon equations (nonlinear wave equations), and the nonlinear random Schrödinger equations on the lattice. We also review the related linear time-dependent problems.
REFERENCES
1.
H.
Abdul-Rahman
, B.
Nachtergaele
, R.
Sims
, and G.
Stolz
, “Localization properties of the XY spin chain: A review of mathematical results with an eye toward many-body localization
,” Ann. Phys.
529
(7
), 1600280
(2017
).2.
W.-M.
Wang
, “Energy supercritical nonlinear Schrödinger equations: Quasi-periodic solutions
,” Duke Math. J.
165
(6
), 1129
–1192
(2016
).3.
W.-M.
Wang
, “Quasi-periodic solutions for nonlinear Klein-Gordon equations
,” arXiv:1609.00309v3 (2020
).4.
J.
Bourgain
and M.
Goldstein
, “On nonperturbative localization with quasi-periodic potential
,” Ann. Math.
152
, 835
–879
(2000
).5.
J.
Bourgain
, M.
Goldstein
, and W.
Schlag
, “Anderson localization for Schrödinger operators on with quasi-periodic potential
,” Acta Math.
188
, 41
–86
(2002
).6.
J.
Bourgain
, Green’s Function Estimates for Lattice Schrödinger Operators and Applications
, Annals of Mathematics Studies Vol. 158 (Princeton University Press
, Princeton, NJ
, 2005
).7.
J.
Bourgain
, “Anderson localization for quasi-periodic lattice Schrödinger operators on , d arbitrary
,” Geom. Funct. Anal.
17
, 682
–706
(2007
).8.
W.-M.
Wang
, “Space quasi-periodic standing waves for nonlinear Schrödinger equations
,” Commun. Math. Phys.
378
(2
), 783
–806
(2020
).9.
W.-M.
Wang
, “Infinite energy quasi-periodic solutions to nonlinear Schrödinger equations on
,” arXiv: 1908.11627 (2020
).10.
J.
Fröhlich
and T.
Spencer
, “Absence of diffusion in the Anderson tight binding model for large disorder or low energy
,” Commun. Math. Phys.
88
, 151
–184
(1983
).11.
J.
Fröhlich
, T.
Spencer
, and P.
Wittwer
, “Localization for a class of one dimensional quasi-periodic Schrödinger operators
,” Commun. Math. Phys.
132
, 5
–25
(1990
).12.
M.
Combescure
, “The quantum stability problem for time-periodic perturbations of the harmonic oscillator
,” Ann. Inst. Henri. Poincare Phys. Theor.
47
, 63
–83
(1987
).13.
P.
Duclos
and P.
Stovicek
, “Floquet Hamiltonians with pure point spectrum
,” Commun. Math. Phys.
177
, 327
–347
(1986
).14.
W.-M.
Wang
, “Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbation
,” Commun. Math. Phys.
277
(2
), 459
–496
(2008
).15.
W.
Liu
, “Quantitative inductive estimates for Green’s functions of non-self-adjoint matrices
,” arXiv: 2007.00578 (2020
).16.
B.
Grébert
and E.
Paturel
, “On reducibility of quantum harmonic oacillator on with quasiperiodic in time potential
,” Ann. Fac. Sci. Univ. Toulouse
28
(5
), 977
–1014
(2019
).17.
Z.
Liang
and Z.
Wang
, “Reducibility of quantum harmonic oscillator on with differential and quasi-periodic in time potential
,” J. Differ. Equations
267
, 3355
–3395
(2019
).18.
L. H.
Eliasson
and S. B.
Kuksin
, “On reducibility of Schrödinger equations with quasi-periodic potentials
,” Commun. Math. Phys.
286
(1
), 125
–135
(2009
).19.
J.
Bourgain
and W.-M.
Wang
, “Anderson localization for time quasi-periodic random Schrödinger and wave equations
,” Commun. Math. Phys.
248
, 429
–466
(2004
).20.
J.
Bourgain
, “On growth of Sobolev norms in linear Schrödinger equations with smooth time dependent potential
,” J. Anal. Math.
77
, 315
–348
(1999
).21.
W.-M.
Wang
, “Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equations
,” Commun. PDE
33
(10-12
), 2164
–2179
(2008
).22.
J.-M.
Delort
, “Growth of Sobolev norms of solutions of linear Schrödinger equations on some compact manifolds
,” Int. Math. Res. Not.
12
, 2305
–2328
(2010
).23.
D.
Fang
and Q.
Zhang
, “On growth of Sobolev norms in linear Schrödinger equations with time dependent Gevrey potential
,” J. Dyn. Differ. Equations
24
, 151
–180
(2012
).24.
S.
Basu
, “On bounding the Betti numbers and computing the Euler characteristics of semi-algebraic sets
,” Discrete Comput. Geom.
22
(1
), 1
–18
(1999
).25.
G.
Binyamini
and D.
Novikov
, “Complex cellular structures
,” Ann. Math.
190
, 145
–248
(2019
).26.
W.
Craig
and C. E.
Wayne
, “Newton’s method and periodic solutions of nonlinear wave equation
,” Commun. Pure Appl. Math.
46
, 1409
–1498
(1993
).27.
J.
Colliander
, M.
Keel
, G.
Staffilani
, H.
Takaoka
, and T.
Tao
, “Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation
,” Invent. Math.
181
(1
), 39
–113
(2010
).28.
J.
Bourgain
, “Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations
,” Ann. Math.
148
, 363
–439
(1998
).29.
L. H.
Eliasson
and S. E.
Kuksin
, “KAM for the nonlinear Schrödinger equation
,” Ann. Math.
172
(2
), 371
–435
(2010
).30.
J.
Geng
, X.
Xu
, and J.
You
, “An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation
,” Adv. Math.
226
, 5361
–5402
(2011
).31.
C.
Procesi
and M.
Procesi
, “A KAM algorithm for the resonant non-linear Schrödinger equation
,” Adv. Math.
272
, 399
–470
(2015
).32.
S.
Kuksin
, “Hamiltonian perturbation of infinite-dimensional linear systems with imaginary spectrum
” Funkts. Anal. I Prilozhen
21
, 22
–37
(1987
).33.
C. E.
Wayne
, “Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory
,” Commun. Math. Phys.
127
, 479
–528
(1990
).34.
J.
Pöschel
, “Quasi-periodic solutions for a nonlinear wave equation
,” Comment. Math. Helvetici
71
, 269
–296
(1996
).35.
J.
Bourgain
, “Construction of periodic solutions of nonlinear wave equations in higher dimensions
,” Geom. Func. Anal.
5
, 363
–439
(1995
).36.
L.
Chierchia
and J.
You
, “KAM tori for 1D nonlinear wave equations with periodic boundary conditions
,” Commun. Math. Phys.
211
, 497
–525
(2000
).37.
M.
Berti
and P.
Bolle
, “Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential
,” Nonlinearity
25
, 2579
–2613
(2012
).38.
D.
Damanik
and M.
Goldstein
, “On the existence and uniqueness of global solutions for the KdV equation with quasi-periodic initial data
,” J. Am. Math. Soc.
29
, 825
–856
(2016
).39.
S.
Jitomyrskaya
, W.
Liu
, and Y.
Shi
, “Anderson localization for multi-frequency quasi-periodic operators on
,” Geom. Func. Anal.
30
(2
), 457
–481
(2020
).40.
J.
Bourgain
and I.
Kachkovskiy
, “Anderson localization for two interacting quasiperiodic particles
,” Geom. Funct. Anal.
29
(1
), 3
–43
(2019
).41.
J.
Geng
, J.
You
, and Z.
Zhao
, “Localization in one dimensional quasi-periodic nonlinear systems
,” Geom. Func. Anal.
24
(1
), 116
–158
(2014
).42.
X.
Yuan
, “KAM theorems and open problems for infinite-dimensional Hamiltonian with short range
,” Sci. China Math.
57
(7
), 1479
–1486
(2014
).43.
J.
Bourgain
and W.-M.
Wang
, “Quasi-periodic solutions of nonlinear random Schrödinger equations
,” J. Eur. Math. Soc.
10
, 1
–45
(2008
).44.
T.
Oh
, “Global existence for the defocusing nonlinear Schrödinger equations with limit periodic initial data
,” Commun. Pure Appl. Math.
14
(4
), 1563
–1580
(2015
).45.
B.
Dodson
, A.
Soffer
, and T.
Spencer
, “The nonlinear Schrödinger equation on and with bounded initial data: Examples and conjectures
,” J. Stat. Phys.
180
, 910
–934
(2020
).46.
H.
von Dreifus
and A.
Klein
, “A new proof of localization in the Anderson tight binding model
,” Commun. Math. Phys.
124
(2
), 285
–299
(1989
).47.
M.
Aizenman
and S.
Molchanov
, “Localization at large disorder and at extreme energies: An elementary derivation
,” Commun. Math. Phys.
157
, 245
–278
(1993
).48.
W.-M.
Wang
and Z.
Zhang
, “Long time Anderson localization for the nonlinear random Schrödinger equation
,” J. Stat. Phys.
134
, 953
–968
(2009
), part of Special Issue on Festschrift in honor of the 60th birthdays of J. Fröhlich and T. Spencer.49.
H.
Cong
, Y.
Shi
, and Z.
Zhang
, “Long time Anderson localization for the nonlinear Schrödinger equation revisited
,” J. Stat. Phys.
182
, 10
(2021
).50.
J.
Bourgain
and W.-M.
Wang
, “Diffusion bound for a nonlinear Schrödinger equation
,” in Mathematical Aspect of Nonlinear Dispersive Equations
, Annals of Mathematics Studies Vol. 163 (Princeton University Press
, Princeton, NJ
, 2007
), pp. 21
–42
51.
52.
D.
Bambusi
and B.
Grébert
, “Birkhoff normal form for partial differential equations with tame modulus
,” Duke Math. J.
135
(3
), 507
–567
(2006
).53.
J.
Fröhlich
, T.
Spencer
, and C. E.
Wayne
, “Localization in disordered, nonlinear dynamical systems
,” J. Stat. Phys.
42
(3-4
), 247
–274
(1986
).54.
S.
Fishman
, Y.
Krivolapov
, and A.
Soffer
, “On the problem of dynamical localization in the nonlinear Schrödinger equation with a random potential
,” J. Stat. Phys.
131
(5
), 843
–865
(2008
).55.
J.
Bourgain
, “On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE
,” Int. Math. Res. Not.
1996
(6
), 277
–304
.© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.