In the Madelung–Bohm approach to quantum mechanics, we consider a time dependent phase that depends quadratically on position, and we show that it leads to a Bohm potential that corresponds to a time dependent harmonic oscillator, provided the time dependent term in the phase obeys an Ermakov equation.

1.
P.
Bertet
,
A.
Auffeves
,
P.
Maioli
,
S.
Osnaghi
,
T.
Meunier
,
M.
Brune
,
J. M.
Raimond
, and
S.
Haroche
,
Phys. Rev. Lett.
89
,
200402
(
2002
).
2.
D.
Leibfried
,
D. M.
Meekhof
,
B. E.
King
,
C.
Monroe
,
W. M.
Itano
, and
D. J.
Wineland
,
Phys. Rev. Lett.
77
,
4281
(
1996
).
3.
X.
Chen
,
A.
Ruschhaupt
,
S.
Schmidt
,
A.
del Campo
,
D.
Guéry-Odelin
, and
J. G.
Muga
,
Phys. Rev. Lett.
104
,
063002
(
2010
).
4.
V. V.
Dodonov
and
A. B.
Klimov
,
Phys. Rev. A
53
,
2664
(
1996
).
5.
R.
Román-Ancheyta
,
I.
Ramos-Prieto
,
A.
Perez-Leija
,
K.
Busch
, and
R. D. J.
León-Montiel
,
Phys. Rev. A
96
,
032501
(
2017
).
6.
J.
Casanova
,
R.
Puebla
,
H.
Moya-Cessa
, and
M. B.
Plenio
,
npj Quantum Inf.
4
,
47
(
2018
).
7.
H. R.
Lewis
,
Phys. Rev. Lett.
18
,
510
513
(
1967
).
8.
H. R.
Lewis
and
P. G. L.
Leach
,
J. Math. Phys.
23
,
165
175
(
1982
).
9.
J. R.
Ray
,
Phys. Rev. A
26
,
729
733
(
1982
).
10.
K.-E.
Thylwe
and
H. J.
Korsch
,
J. Phys. A: Math. Gen.
31
,
L279
L285
(
1998
).
11.
M. F.
Guasti
and
H.
Moya-Cessa
,
J. Phys. A: Math. Gen.
36
,
2069
2076
(
2003
).
12.
C. M.
Cheng
and
P. C. W.
Fung
, “
The evolution operator technique in solving the Schrödinger equation, and its application to disentangling exponential operators and solving the problem of a mass-varying harmonic oscillator
,”
J. Phys. A: Math. Gen.
21
,
4115
4131
(
1988
).
13.
H.
Moya-Cessa
and
M.
Fernández Guasti
,
Rev. Mex. Fis.
53
,
42
46
(
2007
).
14.
I.
Ramos-Prieto
,
A.
Espinosa-Zuñiga
,
M.
Fernández-Guasti
, and
H. M.
Moya-Cessa
,
Mod. Phys. Lett. B
32
,
1850235
(
2018
).
15.
I. A.
Pedrosa
,
Phys. Rev. A
55
,
3219
(
1997
).
16.
M. A.
de Ponte
and
A. C.
Santos
,
Quantum Inf. Process.
17
,
149
(
2018
).
17.
A.
Levy
,
A.
Kiely
,
J. G.
Muga
,
R.
Kosloff
, and
E.
Torrontegui
,
New J. Phys.
20
,
025006
(
2018
).
18.
D.
Barral
and
J.
Liñares
,
Opt. Commun.
359
,
61
65
(
2016
).
19.
D.
Barral
and
J.
Liñares
,
J. Opt. Soc. Am. B
32
,
1993
2002
(
2015
).
20.
A.
Perez-Leija
,
R.
Keil
,
H.
Moya-Cessa
,
A.
Szameit
, and
D. N.
Christodoulides
,
Phys. Rev. A
87
,
022303
(
2013
).
21.
R.
Keil
,
A.
Perez-Leija
,
P.
Aleahmad
,
H.
Moya-Cessa
,
S.
Nolte
,
D. N.
Christodoulides
, and
A.
Szameit
,
Opt. Lett.
37
,
3801
3803
(
2012
).
22.
B. M.
Rodríguez-Lara
,
F.
Soto-Eguibar
,
A. Z.
Cárdenas
, and
H. M.
Moya-Cessa
,
Opt. Express
21
,
12888
12898
(
2013
).
23.
S. A.
Hojman
and
F. A.
Asenjo
,
Phys. Lett. A
384
,
126913
(
2020
).
24.
S. A.
Hojman
and
F. A.
Asenjo
,
Phys. Rev. A
102
,
052211
(
2020
).
25.
S. A.
Hojman
and
F. A.
Asenjo
,
Phys. Lett. A
384
,
126263
(
2020
).
26.
A. J.
Makowski
and
S.
Konkel
,
Phys. Rev. A
58
,
4975
(
1998
).
27.
R. E.
Wyatt
,
Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics
(
Springer
,
2005
).
28.
P. R.
Holland
,
The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics
(
Cambridge University Press
,
1993
).
29.
31.
H. P.
Yuen
,
Phys. Rev. A
13
,
2226
2243
(
1976
).
32.
S. M.
Barnett
,
A.
Beige
,
A.
Ekert
 et al,
Prog. Quantum Electron.
54
,
19
(
2017
).
33.
B.
Hall
,
Lie Groups, Lie Algebras, and Representations: An Elementary Introduction
, 2nd ed. (
Springer
,
2003
).
34.
E.
Pinney
,
Proc. Am. Math. Soc.
1
(
5
),
681
(
1950
).
35.
J. M.
Cervero
and
P. G.
Estévez
,
Symmetry
13
,
493
(
2021
).
36.
A. D.
Polyanin
and
V. F.
Zaitsev
,
Handbook of Exact Solutions for Ordinary Differential Equations
, 2nd ed. (
Chapman and Hall/CRC
,
2003
).
You do not currently have access to this content.