In the Madelung–Bohm approach to quantum mechanics, we consider a time dependent phase that depends quadratically on position, and we show that it leads to a Bohm potential that corresponds to a time dependent harmonic oscillator, provided the time dependent term in the phase obeys an Ermakov equation.
REFERENCES
1.
P.
Bertet
, A.
Auffeves
, P.
Maioli
, S.
Osnaghi
, T.
Meunier
, M.
Brune
, J. M.
Raimond
, and S.
Haroche
, Phys. Rev. Lett.
89
, 200402
(2002
).2.
D.
Leibfried
, D. M.
Meekhof
, B. E.
King
, C.
Monroe
, W. M.
Itano
, and D. J.
Wineland
, Phys. Rev. Lett.
77
, 4281
(1996
).3.
X.
Chen
, A.
Ruschhaupt
, S.
Schmidt
, A.
del Campo
, D.
Guéry-Odelin
, and J. G.
Muga
, Phys. Rev. Lett.
104
, 063002
(2010
).4.
V. V.
Dodonov
and A. B.
Klimov
, Phys. Rev. A
53
, 2664
(1996
).5.
R.
Román-Ancheyta
, I.
Ramos-Prieto
, A.
Perez-Leija
, K.
Busch
, and R. D. J.
León-Montiel
, Phys. Rev. A
96
, 032501
(2017
).6.
J.
Casanova
, R.
Puebla
, H.
Moya-Cessa
, and M. B.
Plenio
, npj Quantum Inf.
4
, 47
(2018
).7.
H. R.
Lewis
, Phys. Rev. Lett.
18
, 510
–513
(1967
).8.
H. R.
Lewis
and P. G. L.
Leach
, J. Math. Phys.
23
, 165
–175
(1982
).9.
J. R.
Ray
, Phys. Rev. A
26
, 729
–733
(1982
).10.
K.-E.
Thylwe
and H. J.
Korsch
, J. Phys. A: Math. Gen.
31
, L279
–L285
(1998
).11.
M. F.
Guasti
and H.
Moya-Cessa
, J. Phys. A: Math. Gen.
36
, 2069
–2076
(2003
).12.
C. M.
Cheng
and P. C. W.
Fung
, “The evolution operator technique in solving the Schrödinger equation, and its application to disentangling exponential operators and solving the problem of a mass-varying harmonic oscillator
,” J. Phys. A: Math. Gen.
21
, 4115
–4131
(1988
).13.
14.
I.
Ramos-Prieto
, A.
Espinosa-Zuñiga
, M.
Fernández-Guasti
, and H. M.
Moya-Cessa
, Mod. Phys. Lett. B
32
, 1850235
(2018
).15.
I. A.
Pedrosa
, Phys. Rev. A
55
, 3219
(1997
).16.
M. A.
de Ponte
and A. C.
Santos
, Quantum Inf. Process.
17
, 149
(2018
).17.
A.
Levy
, A.
Kiely
, J. G.
Muga
, R.
Kosloff
, and E.
Torrontegui
, New J. Phys.
20
, 025006
(2018
).18.
D.
Barral
and J.
Liñares
, Opt. Commun.
359
, 61
–65
(2016
).19.
D.
Barral
and J.
Liñares
, J. Opt. Soc. Am. B
32
, 1993
–2002
(2015
).20.
A.
Perez-Leija
, R.
Keil
, H.
Moya-Cessa
, A.
Szameit
, and D. N.
Christodoulides
, Phys. Rev. A
87
, 022303
(2013
).21.
R.
Keil
, A.
Perez-Leija
, P.
Aleahmad
, H.
Moya-Cessa
, S.
Nolte
, D. N.
Christodoulides
, and A.
Szameit
, Opt. Lett.
37
, 3801
–3803
(2012
).22.
B. M.
Rodríguez-Lara
, F.
Soto-Eguibar
, A. Z.
Cárdenas
, and H. M.
Moya-Cessa
, Opt. Express
21
, 12888
–12898
(2013
).23.
S. A.
Hojman
and F. A.
Asenjo
, Phys. Lett. A
384
, 126913
(2020
).24.
S. A.
Hojman
and F. A.
Asenjo
, Phys. Rev. A
102
, 052211
(2020
).25.
S. A.
Hojman
and F. A.
Asenjo
, Phys. Lett. A
384
, 126263
(2020
).26.
A. J.
Makowski
and S.
Konkel
, Phys. Rev. A
58
, 4975
(1998
).27.
R. E.
Wyatt
, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics
(Springer
, 2005
).28.
P. R.
Holland
, The Quantum Theory of Motion: An Account of the de Broglie-Bohm Causal Interpretation of Quantum Mechanics
(Cambridge University Press
, 1993
).29.
E.
Madelung
, Z. Phys.
40
, 322
(1927
).30.
D.
Bohm
, Phys. Rev.
85
, 166
(1952
).31.
H. P.
Yuen
, Phys. Rev. A
13
, 2226
–2243
(1976
).32.
S. M.
Barnett
, A.
Beige
, A.
Ekert
et al, Prog. Quantum Electron.
54
, 19
(2017
).33.
B.
Hall
, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction
, 2nd ed. (Springer
, 2003
).34.
E.
Pinney
, Proc. Am. Math. Soc.
1
(5
), 681
(1950
).35.
J. M.
Cervero
and P. G.
Estévez
, Symmetry
13
, 493
(2021
).36.
A. D.
Polyanin
and V. F.
Zaitsev
, Handbook of Exact Solutions for Ordinary Differential Equations
, 2nd ed. (Chapman and Hall/CRC
, 2003
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.