We study certain non-tracial von Neumann algebras generated by some self-adjoint operators satisfying mixed q-commutation relations. Such algebras are discussed in the work of Bikram et al. [“Mixed q-deformed Araki-Woods von Neumann algebras,” (submitted)]. We prove the analog of Nelson’s hypercontractivity inequality for the mixed q-Ornstein–Uhlenbeck semigroup. We also show that the mixed q-Ornstein–Uhlenbeck semigroup is ultracontractive.

1.
P.
Bikram
,
R.
Kumar
, and
K. K.
Mukherjee
, “
Mixed q-deformed Araki-Woods von Neumann algebras
,” (submitted).
2.
E.
Nelson
, “
The free Markoff field
,”
J. Funct. Anal.
12
,
211
227
(
1973
).
3.
L.
Gross
, “
Logarithmic Sobolev inequalities and contractivity properties of semigroups
,” in
Dirichlet Forms (Varenna, 1992)
, Lecture Notes in Mathematics Vol. 1563 (
Springer
,
Berlin
,
1993
), pp.
54
88
.
4.
D.
Bakry
, “
L’hypercontractivité et son utilisation en théorie des semigroupes
,” in
Lectures on Probability Theory (Saint-Flour, 1992)
, Lecture Notes in Mathematics Vol. 1581 (
Springer
,
Berlin
,
1994
), pp.
1
114
.
5.
P.
Biane
, “
Free hypercontractivity
,”
Commun. Math. Phys.
184
,
457
474
(
1997
).
6.
M.
Bożejko
and
R.
Speicher
, “
Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces
,”
Math. Ann.
300
,
97
120
(
1994
).
7.
M.
Bożejko
, “
Ultracontractivity and strong Sobolev inequality for q-Ornstein–Uhlenbeck semigroup (−1 < q < 1)
,”
Infinite Dimens. Anal. Quantum Probab. Relat. Top.
2
,
203
220
(
1999
).
8.
I.
Królak
, “
Contractivity properties of Ornstein-Uhlenbeck semigroup for general commutation relations
,”
Math. Z.
250
,
915
937
(
2005
).
9.
M.
Junge
and
Q.
Zeng
, “
Mixed q-Gaussian algebras
,” arXiv:1505.07852 (
2015
).
10.
H. H.
Lee
and
É.
Ricard
, “
Hypercontractivity on the q-Araki-Woods algebras
,”
Commun. Math. Phys.
305
,
533
553
(
2011
).
11.
F.
Hiai
, “
q-deformed Araki-Woods algebras
,” in
Operator Algebras and Mathematical Physics
(
Theta
,
Constanţa, Bucharest
,
2003
), pp.
169
202
.
12.
P.
Bikram
,
R.
Kumar
, and
K. K.
Mukherjee
, “
Non injectivity of mixed q-deformed von Neumann algebras
,” (submitted).
13.
P.
Bikram
and
K.
Mukherjee
, “
Generator masas in q-deformed Araki-Woods von Neumann algebras and factoriality
,”
J. Funct. Anal.
273
,
1443
1478
(
2017
).
14.
É.
Ricard
, “
Factoriality of q-Gaussian von Neumann algebras
,”
Commun. Math. Phys.
257
,
659
665
(
2005
).
15.
S.
Avsec
,
M.
Brannan
, and
M.
Wasilewski
, “
Complete metric approximation property for q-Araki-Woods algebras
,”
J. Funct. Anal.
274
,
544
572
(
2018
).
16.
S.
Avsec
, “
Strong solidity of the q-Gaussian algebras for all −1 < q < 1
,” arXiv:1110.4918 [math.OA] (
2012
).
17.
A.
Nou
, “
Non injectivity of the q-deformed von Neumann algebra
,”
Math. Ann.
330
,
17
38
(
2004
).
18.
C.
Houdayer
and
É.
Ricard
, “
Approximation properties and absence of Cartan subalgebra for free Araki-Woods factors
,”
Adv. Math.
228
,
764
802
(
2011
).
19.
H.
Kosaki
, “
Applications of the complex interpolation method to a von Neumann algebra: Noncommutative Lp-spaces
,”
J. Funct. Anal.
56
,
29
78
(
1984
).
20.
A.
Nou
, “
Asymptotic matricial models and QWEP property for q-Araki–Woods algebras
,”
J. Funct. Anal.
232
,
295
327
(
2006
).
21.
M.
Junge
and
Q.
Xu
, “
Noncommutative maximal ergodic theorems
,”
J. Am. Math. Soc.
20
,
385
439
(
2007
).
22.
M.
Terp
,
Lp-Spaces Associated with von Neumann Algebras
, Notes Mathematical Institute (
University of Copenhagen
,
1981
), Vol. 3, p.
5
.
23.
R.
Speicher
, “
Generalized statistics of macroscopic fields
,”
Lett. Math. Phys.
27
,
97
104
(
1993
).
You do not currently have access to this content.