The aim of this paper is to establish a few uncertainty principles for the Fourier and the short-time Fourier transforms. In addition, we discuss an analog of the Donoho–Stark uncertainty principle and provide some estimates for the size of the essential support of the short-time Fourier transform.

1.
L.
Hörmander
, “
A uniqueness theorem of Beurling for Fourier transform pairs
,”
Ark. Mat.
29
,
237
240
(
1991
).
2.
S.
Thangavelu
,
An Introduction to the Uncertainty Principle
, Progress in Mathematics Vol. 217 (
Birkhäuser
,
Basel
,
2004
).
3.
G. H.
Hardy
, “
A theorem concerning Fourier transforms
,”
J. London Math. Soc.
s1-8
,
227
231
(
1933
).
4.
M.
Cowling
and
J. F.
Price
, “
Generalizations of Heisenberg’s inequality
,” in
Harmonic Analysis
, Lecture Notes in Mathematics Vol. 992, edited by
G.
Mauceri
,
F.
Ricci
, and
G.
Weiss
(
Springer
,
Berlin
,
1983
), pp.
443
449
.
5.
A.
Bonami
,
B.
Demange
, and
P.
Jaming
, “
Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms
,”
Rev. Mat. Iberoam.
19
,
23
55
(
2003
).
6.
V.
Havin
and
B.
Jöricke
,
The Uncertainty Principle in Harmonic Analysis
, A Series of Modern Surveys in Mathematics Vol. 28 (
Springer-Verlag
,
Berlin
,
1994
).
7.
K.
Gröchenig
and
G.
Zimmermann
, “
Hardy’s theorem and the short-time Fourier transform of Schwartz functions
,”
J. London Math. Soc.
63
(
1
),
205
214
(
2001
).
8.
B.
Demange
, “
Uncertainty principles for the ambiguity function
,”
J. London Math. Soc.
72
(
3
),
717
730
(
2005
).
9.
K.
Gröchenig
,
Foundations of Time–Frequency Analysis
(
Birkhäuser
,
Boston
,
2001
).
10.
K.
Gröchenig
, in
Uncertainty Principles for Time–Frequency Representations
, Advances in Gabor Analysis, edited by
H. G.
Feichtinger
and
T.
Strohmer
(
Birkhäuser
,
Boston
,
2003
), pp.
11
30
.
11.
D. L.
Donoho
and
P. B.
Stark
, “
Uncertainty principles and signal recovery
,”
SIAM J. Appl. Math.
49
(
3
),
906
931
(
1989
).
12.
P.
Jaming
, “
Principe d’incertitude qualitatif et reconstruction de phase pour la transformée de Wigner
,”
C. R. Acad. Sci., Ser. I: Math.
327
(
3
),
249
254
(
1998
).
13.
E. H.
Lieb
, “
Integral bounds for radar ambiguity functions and Wigner distributions
,”
J. Math. Phys.
31
(
3
),
594
599
(
1990
).
14.
E.
Malinnikova
, “
Orthonormal sequences in L2(Rd) and time frequency localization
,”
J. Fourier Anal. Appl.
16
(
6
),
983
1006
(
2010
).
You do not currently have access to this content.