We develop a thorough mathematical analysis of the effective Mori–Zwanzig (EMZ) equation governing the dynamics of noise-averaged observables in stochastic differential equations driven by multiplicative Gaussian white noise. Building upon recent work on hypoelliptic operators, we prove that the EMZ memory kernel and fluctuation terms converge exponentially fast in time to a unique equilibrium state that admits an explicit representation. We apply the new theoretical results to the Langevin dynamics of a high-dimensional particle system with smooth interaction potential.

1.
Bazzani
,
A.
,
Bassi
,
G.
, and
Turchetti
,
G.
, “
Diffusion and memory effects for stochastic processes and fractional Langevin equations
,”
Physica A
324
(
3–4
),
530
550
(
2003
).
2.
Brennan
,
C.
and
Venturi
,
D.
, “
Data-driven closures for stochastic dynamical systems
,”
J. Comput. Phys.
372
,
281
298
(
2018
).
3.
Budhiraja
,
A.
,
Dupuis
,
P.
, and
Maroulas
,
V.
, “
Large deviations for stochastic flows of diffeomorphisms
,”
Bernoulli
16
(
1
),
234
257
(
2010
).
4.
Cho
,
H.
,
Venturi
,
D.
, and
Karniadakis
,
G. E.
, “
Statistical analysis and simulation of random shocks in Burgers equation
,”
Proc. R. Soc. A
470
(
2171
),
20140080
(
2014
).
5.
Chorin
,
A. J.
,
Hald
,
O. H.
, and
Kupferman
,
R.
, “
Optimal prediction and the Mori–Zwanzig representation of irreversible processes
,”
Proc. Natl. Acad. Sci. U. S. A.
97
(
7
),
2968
2973
(
2000
).
6.
Chorin
,
A. J.
,
Hald
,
O. H.
, and
Kupferman
,
R.
, “
Optimal prediction with memory
,”
Physica D
166
(
3–4
),
239
257
(
2002
).
7.
Chorin
,
A. J.
,
Kupferman
,
R.
, and
Levy
,
D.
, “
Optimal prediction for Hamiltonian partial differential equations
,”
J. Comput. Phys.
162
(
1
),
267
297
(
2000
).
8.
Chorin
,
A.
and
Stinis
,
P.
, “
Problem reduction, renormalization and memory
,”
Commun. Appl. Math. Comput. Sci.
1
(
1
),
1
27
(
2006
).
9.
Darve
,
E.
,
Solomon
,
J.
, and
Kia
,
A.
, “
Computing generalized Langevin equations and generalized Fokker–Planck equations
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
27
),
10884
10889
(
2009
).
10.
Denisov
,
S. I.
,
Horsthemke
,
W.
, and
Hänggi
,
P.
, “
Generalized Fokker-Planck equation: Derivation and exact solutions
,”
Eur. Phys. J. B
68
(
4
),
567
575
(
2009
).
11.
Dominy
,
J. M.
and
Venturi
,
D.
, “
Duality and conditional expectations in the Nakajima-Mori-Zwanzig formulation
,”
J. Math. Phys.
58
(
8
),
082701
(
2017
).
12.
Eckmann
,
J.-P.
and
Hairer
,
M.
, “
Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators
,”
Commun. Math. Phys.
212
(
1
),
105
164
(
2000
).
13.
Eckmann
,
J.-P.
and
Hairer
,
M.
, “
Spectral properties of hypoelliptic operators
,”
Commun. Math. Phys.
235
(
2
),
233
253
(
2003
).
14.
Eckmann
,
J.-P.
,
Pillet
,
C.-A.
, and
Rey-Bellet
,
L.
, “
Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures
,”
Commun. Math. Phys.
201
(
3
),
657
697
(
1999
).
15.
Engel
,
K.-J.
and
Nagel
,
R.
,
One-Parameter Semigroups for Linear Evolution Equations
(
Springer
,
1999
), Vol. 194.
16.
Español
,
P.
, “
Hydrodynamics from dissipative particle dynamics
,”
Phys. Rev. E
52
(
2
),
1734
(
1995
).
17.
Español
,
P.
and
Warren
,
P.
, “
Statistical mechanics of dissipative particle dynamics
,”
Europhys. Lett.
30
(
4
),
191
(
1995
).
18.
Falkena
,
S. K. J.
,
Quinn
,
C.
,
Sieber
,
J.
,
Frank
,
J.
, and
Dijkstra
,
H. A.
, “
Derivation of delay equation climate models using the Mori-Zwanzig formalism
,”
Proc. R. Soc. A
475
,
20190075
(
2019
).
19.
Givon
,
D.
,
Kupferman
,
R.
, and
Hald
,
O. H.
, “
Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism
,”
Isr. J. Math.
145
(
1
),
221
241
(
2005
).
20.
Helffer
,
B.
and
Nier
,
F.
,
Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians
(
Springer
,
2005
).
21.
Hérau
,
F.
and
Nier
,
F.
, “
Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential
,”
Arch. Ration. Mech. Anal.
171
(
2
),
151
218
(
2004
).
22.
Hudson
,
T.
and
Li
,
X. H.
, “
Coarse-graining of overdamped Langevin dynamics via the Mori–Zwanzig formalism
,”
Multiscale Model. Simul.
18
(
2
),
1113
1135
(
2020
).
23.
Van Kampen
,
N. G.
and
Oppenheim
,
I.
, “
Brownian motion as a problem of eliminating fast variables
,”
Physica A
138
(
1–2
),
231
248
(
1986
).
24.
Kato
,
T.
,
Perturbation Theory for Linear Operators
(
Springer Science & Business Media
,
2013
), Vol. 132.
25.
Kloeden
,
P. E.
and
Platen
,
E.
,
Numerical Solution of Stochastic Differential Equations
(
Springer Science & Business Media
,
2013
), Vol. 23.
26.
Kunita
,
H.
,
Stochastic Flows and Stochastic Differential Equations
(
Cambridge University Press
,
1997
).
27.
Lei
,
H.
,
Baker
,
N. A.
, and
Li
,
X.
, “
Data-driven parameterization of the generalized Langevin equation
,”
Proc. Natl. Acad. Sci. U. S. A.
113
(
50
),
14183
14188
(
2016
).
28.
Li
,
Z.
,
Bian
,
X.
,
Li
,
X.
, and
Karniadakis
,
G. E.
, “
Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism
,”
J. Chem. Phys.
143
,
243128
(
2015
).
29.
Lin
,
K. K.
and
Lu
,
F.
, “
Data-driven model reduction, Wiener projections, and the Koopman-Mori-Zwanzig formalism
,”
J. Comput. Phys.
424
,
109864
(
2021
).
30.
Lu
,
F.
,
Lin
,
K. K.
, and
Chorin
,
A. J.
, “
Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation
,”
Physica D
340
,
46
57
(
2017
).
31.
Mori
,
H.
, “
Transport, collective motion, and Brownian motion
,”
Prog. Theor. Phys.
33
(
3
),
423
455
(
1965
).
32.
Morita
,
T.
,
Mori
,
H.
, and
Mashiyama
,
K. T.
, “
Contraction of state variables in non-equilibrium open systems. II
,”
Prog. Theor. Phys.
64
(
2
),
500
521
(
1980
).
33.
Ottobre
,
M.
,
Pavliotis
,
G. A.
, and
Pravda-Starov
,
K.
, “
Exponential return to equilibrium for hypoelliptic quadratic systems
,”
J. Funct. Anal.
262
,
4000
4039
(
2012
).
34.
Parish
,
E. J.
and
Duraisamy
,
K.
, “
A dynamic subgrid scale model for large eddy simulations based on the Mori–Zwanzig formalism
,”
J. Comput. Phys.
349
,
154
175
(
2017
).
35.
Parish
,
E. J.
and
Duraisamy
,
K.
, “
Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism
,”
Phys. Rev. Fluids
2
(
1
),
014604
(
2017
).
36.
Da Prato
,
G.
and
Zabczyk
,
J.
,
Ergodicity for Infinite Dimensional Systems
(
Cambridge University Press
,
1996
), Vol. 229.
37.
Reed
,
M.
and
Simon
,
B.
,
Methods of Modern Mathematical Physics: Fourier Analysis, Self-Adjointness
(
Elsevier
,
1975
), Vol. 2.
38.
Risken
,
H.
,
The Fokker-Planck Equation: Methods of Solution and Applications
, 2nd ed., Mathematics in Science and Engineering Vol. 60 (
Springer-Verlag
,
1989
).
39.
Stinis
,
P.
, “
Stochastic optimal prediction for the Kuramoto–Sivashinsky equation
,”
Multiscale Model. Simul.
2
(
4
),
580
612
(
2004
).
40.
Stinis
,
P.
, “
Renormalized reduced models for singular PDEs
,”
Commun. Appl. Math. Comput. Sci.
8
(
1
),
39
66
(
2013
).
41.
Stinis
,
P.
, “
Renormalized Mori–Zwanzig-reduced models for systems without scale separation
,”
Proc. R. Soc. A
471
(
2176
),
20140446
(
2015
).
42.
Venturi
,
D.
, “
The numerical approximation of nonlinear functionals and functional differential equations
,”
Phys. Rep.
732
,
1
102
(
2018
).
43.
Venturi
,
D.
,
Cho
,
H.
, and
Karniadakis
,
G. E.
, “
Mori-Zwanzig approach to uncertainty quantification
,” in
Handbook of Uncertainty Quantification
, edited by
Ghanem
,
R.
,
Higdon
,
D.
, and
Owhadi
,
H.
(
Springer
,
2016
).
44.
Venturi
,
D.
,
Choi
,
M.
, and
Karniadakis
,
G. E.
, “
Supercritical quasi-conduction states in stochastic Rayleigh–Bénard convection
,”
Int. J. Heat Mass Transfer
55
(
13–14
),
3732
3743
(
2012
).
45.
Venturi
,
D.
and
Dektor
,
A.
, “
Spectral methods for nonlinear functionals and functional differential equations
,”
Res. Math. Sci.
8
,
27
(
2021
).
46.
Venturi
,
D.
and
Karniadakis
,
G. E.
, “
New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear PDEs
,”
J. Comput. Phys.
231
,
7450
7474
(
2012
).
47.
Venturi
,
D.
and
Karniadakis
,
G. E.
, “
Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems
,”
Proc. R. Soc. A
470
(
2166
),
20130754
(
2014
).
48.
Venturi
,
D.
,
Sapsis
,
T. P.
,
Cho
,
H.
, and
Karniadakis
,
G. E.
, “
A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems
,”
Proc. R. Soc. A
468
(
2139
),
759
783
(
2012
).
49.
Watanabe
,
S.
,
Lectures on Stochastic Differential Equations and Malliavin Calculus
(
Lectures Delivered at the Indian Institute of Science
,
Bangalore
,
1984
).
50.
Wihstutz
,
V.
and
Pinsky
,
M.
,
Diffusion Processes and Related Problems in Analysis, Volume II: Stochastic Flows
(
Springer Science & Business Media
,
2012
), Vol. 27.
51.
Yoshimoto
,
Y.
,
Kinefuchi
,
I.
,
Mima
,
T.
,
Fukushima
,
A.
,
Tokumasu
,
T.
, and
Takagi
,
S.
, “
Bottom-up construction of interaction models of non-Markovian dissipative particle dynamics
,”
Phys. Rev. E
88
(
4
),
043305
(
2013
).
52.
Zhu
,
Y.
,
Dominy
,
J. M.
, and
Venturi
,
D.
, “
On the estimation of the Mori-Zwanzig memory integral
,”
J. Math. Phys.
59
(
10
),
103501
(
2018
).
53.
Zhu
,
Y.
,
Lei
,
H.
, and
Kim
,
C.
, “
Generalized second fluctuation-dissipation theorem in the nonequilibrium steady state: Theory and applications
,” preprint arXiv:2104.05222 (2021).
54.
Zhu
,
Y.
and
Venturi
,
D.
, “
Faber approximation of the Mori–Zwanzig equation
,”
J. Comput. Phys.
372
,
694
718
(
2018
).
55.
Zhu
,
Y.
and
Venturi
,
D.
, “
Generalized Langevin equations for systems with local interactions
,”
J. Stat. Phys.
178
,
1217
1247
(
2020
).
56.
Zinn-Justin
,
J.
,
Quantum Field Theory and Critical Phenomena
, 4th ed. (
Oxford University Press
,
2002
).
57.
Zwanzig
,
R.
, “
Memory effects in irreversible thermodynamics
,”
Phys. Rev.
124
(
4
),
983
(
1961
).
58.
Zwanzig
,
R.
, “
Nonlinear generalized Langevin equations
,”
J. Stat. Phys.
9
(
3
),
215
220
(
1973
).
You do not currently have access to this content.