We develop a thorough mathematical analysis of the effective Mori–Zwanzig (EMZ) equation governing the dynamics of noise-averaged observables in stochastic differential equations driven by multiplicative Gaussian white noise. Building upon recent work on hypoelliptic operators, we prove that the EMZ memory kernel and fluctuation terms converge exponentially fast in time to a unique equilibrium state that admits an explicit representation. We apply the new theoretical results to the Langevin dynamics of a high-dimensional particle system with smooth interaction potential.
REFERENCES
1.
Bazzani
, A.
, Bassi
, G.
, and Turchetti
, G.
, “Diffusion and memory effects for stochastic processes and fractional Langevin equations
,” Physica A
324
(3–4
), 530
–550
(2003
).2.
Brennan
, C.
and Venturi
, D.
, “Data-driven closures for stochastic dynamical systems
,” J. Comput. Phys.
372
, 281
–298
(2018
).3.
Budhiraja
, A.
, Dupuis
, P.
, and Maroulas
, V.
, “Large deviations for stochastic flows of diffeomorphisms
,” Bernoulli
16
(1
), 234
–257
(2010
).4.
Cho
, H.
, Venturi
, D.
, and Karniadakis
, G. E.
, “Statistical analysis and simulation of random shocks in Burgers equation
,” Proc. R. Soc. A
470
(2171
), 20140080
(2014
).5.
Chorin
, A. J.
, Hald
, O. H.
, and Kupferman
, R.
, “Optimal prediction and the Mori–Zwanzig representation of irreversible processes
,” Proc. Natl. Acad. Sci. U. S. A.
97
(7
), 2968
–2973
(2000
).6.
Chorin
, A. J.
, Hald
, O. H.
, and Kupferman
, R.
, “Optimal prediction with memory
,” Physica D
166
(3–4
), 239
–257
(2002
).7.
Chorin
, A. J.
, Kupferman
, R.
, and Levy
, D.
, “Optimal prediction for Hamiltonian partial differential equations
,” J. Comput. Phys.
162
(1
), 267
–297
(2000
).8.
Chorin
, A.
and Stinis
, P.
, “Problem reduction, renormalization and memory
,” Commun. Appl. Math. Comput. Sci.
1
(1
), 1
–27
(2006
).9.
Darve
, E.
, Solomon
, J.
, and Kia
, A.
, “Computing generalized Langevin equations and generalized Fokker–Planck equations
,” Proc. Natl. Acad. Sci. U. S. A.
106
(27
), 10884
–10889
(2009
).10.
Denisov
, S. I.
, Horsthemke
, W.
, and Hänggi
, P.
, “Generalized Fokker-Planck equation: Derivation and exact solutions
,” Eur. Phys. J. B
68
(4
), 567
–575
(2009
).11.
Dominy
, J. M.
and Venturi
, D.
, “Duality and conditional expectations in the Nakajima-Mori-Zwanzig formulation
,” J. Math. Phys.
58
(8
), 082701
(2017
).12.
Eckmann
, J.-P.
and Hairer
, M.
, “Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators
,” Commun. Math. Phys.
212
(1
), 105
–164
(2000
).13.
Eckmann
, J.-P.
and Hairer
, M.
, “Spectral properties of hypoelliptic operators
,” Commun. Math. Phys.
235
(2
), 233
–253
(2003
).14.
Eckmann
, J.-P.
, Pillet
, C.-A.
, and Rey-Bellet
, L.
, “Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures
,” Commun. Math. Phys.
201
(3
), 657
–697
(1999
).15.
Engel
, K.-J.
and Nagel
, R.
, One-Parameter Semigroups for Linear Evolution Equations
(Springer
, 1999
), Vol. 194.16.
Español
, P.
, “Hydrodynamics from dissipative particle dynamics
,” Phys. Rev. E
52
(2
), 1734
(1995
).17.
Español
, P.
and Warren
, P.
, “Statistical mechanics of dissipative particle dynamics
,” Europhys. Lett.
30
(4
), 191
(1995
).18.
Falkena
, S. K. J.
, Quinn
, C.
, Sieber
, J.
, Frank
, J.
, and Dijkstra
, H. A.
, “Derivation of delay equation climate models using the Mori-Zwanzig formalism
,” Proc. R. Soc. A
475
, 20190075
(2019
).19.
Givon
, D.
, Kupferman
, R.
, and Hald
, O. H.
, “Existence proof for orthogonal dynamics and the Mori-Zwanzig formalism
,” Isr. J. Math.
145
(1
), 221
–241
(2005
).20.
Helffer
, B.
and Nier
, F.
, Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians
(Springer
, 2005
).21.
Hérau
, F.
and Nier
, F.
, “Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential
,” Arch. Ration. Mech. Anal.
171
(2
), 151
–218
(2004
).22.
Hudson
, T.
and Li
, X. H.
, “Coarse-graining of overdamped Langevin dynamics via the Mori–Zwanzig formalism
,” Multiscale Model. Simul.
18
(2
), 1113
–1135
(2020
).23.
Van Kampen
, N. G.
and Oppenheim
, I.
, “Brownian motion as a problem of eliminating fast variables
,” Physica A
138
(1–2
), 231
–248
(1986
).24.
Kato
, T.
, Perturbation Theory for Linear Operators
(Springer Science & Business Media
, 2013
), Vol. 132.25.
Kloeden
, P. E.
and Platen
, E.
, Numerical Solution of Stochastic Differential Equations
(Springer Science & Business Media
, 2013
), Vol. 23.26.
Kunita
, H.
, Stochastic Flows and Stochastic Differential Equations
(Cambridge University Press
, 1997
).27.
Lei
, H.
, Baker
, N. A.
, and Li
, X.
, “Data-driven parameterization of the generalized Langevin equation
,” Proc. Natl. Acad. Sci. U. S. A.
113
(50
), 14183
–14188
(2016
).28.
Li
, Z.
, Bian
, X.
, Li
, X.
, and Karniadakis
, G. E.
, “Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism
,” J. Chem. Phys.
143
, 243128
(2015
).29.
Lin
, K. K.
and Lu
, F.
, “Data-driven model reduction, Wiener projections, and the Koopman-Mori-Zwanzig formalism
,” J. Comput. Phys.
424
, 109864
(2021
).30.
Lu
, F.
, Lin
, K. K.
, and Chorin
, A. J.
, “Data-based stochastic model reduction for the Kuramoto–Sivashinsky equation
,” Physica D
340
, 46
–57
(2017
).31.
Mori
, H.
, “Transport, collective motion, and Brownian motion
,” Prog. Theor. Phys.
33
(3
), 423
–455
(1965
).32.
Morita
, T.
, Mori
, H.
, and Mashiyama
, K. T.
, “Contraction of state variables in non-equilibrium open systems. II
,” Prog. Theor. Phys.
64
(2
), 500
–521
(1980
).33.
Ottobre
, M.
, Pavliotis
, G. A.
, and Pravda-Starov
, K.
, “Exponential return to equilibrium for hypoelliptic quadratic systems
,” J. Funct. Anal.
262
, 4000
–4039
(2012
).34.
Parish
, E. J.
and Duraisamy
, K.
, “A dynamic subgrid scale model for large eddy simulations based on the Mori–Zwanzig formalism
,” J. Comput. Phys.
349
, 154
–175
(2017
).35.
Parish
, E. J.
and Duraisamy
, K.
, “Non-Markovian closure models for large eddy simulations using the Mori-Zwanzig formalism
,” Phys. Rev. Fluids
2
(1
), 014604
(2017
).36.
Da Prato
, G.
and Zabczyk
, J.
, Ergodicity for Infinite Dimensional Systems
(Cambridge University Press
, 1996
), Vol. 229.37.
Reed
, M.
and Simon
, B.
, Methods of Modern Mathematical Physics: Fourier Analysis, Self-Adjointness
(Elsevier
, 1975
), Vol. 2.38.
Risken
, H.
, The Fokker-Planck Equation: Methods of Solution and Applications
, 2nd ed., Mathematics in Science and Engineering Vol. 60 (Springer-Verlag
, 1989
).39.
Stinis
, P.
, “Stochastic optimal prediction for the Kuramoto–Sivashinsky equation
,” Multiscale Model. Simul.
2
(4
), 580
–612
(2004
).40.
Stinis
, P.
, “Renormalized reduced models for singular PDEs
,” Commun. Appl. Math. Comput. Sci.
8
(1
), 39
–66
(2013
).41.
Stinis
, P.
, “Renormalized Mori–Zwanzig-reduced models for systems without scale separation
,” Proc. R. Soc. A
471
(2176
), 20140446
(2015
).42.
Venturi
, D.
, “The numerical approximation of nonlinear functionals and functional differential equations
,” Phys. Rep.
732
, 1
–102
(2018
).43.
Venturi
, D.
, Cho
, H.
, and Karniadakis
, G. E.
, “Mori-Zwanzig approach to uncertainty quantification
,” in Handbook of Uncertainty Quantification
, edited by Ghanem
, R.
, Higdon
, D.
, and Owhadi
, H.
(Springer
, 2016
).44.
Venturi
, D.
, Choi
, M.
, and Karniadakis
, G. E.
, “Supercritical quasi-conduction states in stochastic Rayleigh–Bénard convection
,” Int. J. Heat Mass Transfer
55
(13–14
), 3732
–3743
(2012
).45.
Venturi
, D.
and Dektor
, A.
, “Spectral methods for nonlinear functionals and functional differential equations
,” Res. Math. Sci.
8
, 27
(2021
).46.
Venturi
, D.
and Karniadakis
, G. E.
, “New evolution equations for the joint response-excitation probability density function of stochastic solutions to first-order nonlinear PDEs
,” J. Comput. Phys.
231
, 7450
–7474
(2012
).47.
Venturi
, D.
and Karniadakis
, G. E.
, “Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems
,” Proc. R. Soc. A
470
(2166
), 20130754
(2014
).48.
Venturi
, D.
, Sapsis
, T. P.
, Cho
, H.
, and Karniadakis
, G. E.
, “A computable evolution equation for the joint response-excitation probability density function of stochastic dynamical systems
,” Proc. R. Soc. A
468
(2139
), 759
–783
(2012
).49.
Watanabe
, S.
, Lectures on Stochastic Differential Equations and Malliavin Calculus
(Lectures Delivered at the Indian Institute of Science
, Bangalore
, 1984
).50.
Wihstutz
, V.
and Pinsky
, M.
, Diffusion Processes and Related Problems in Analysis, Volume II: Stochastic Flows
(Springer Science & Business Media
, 2012
), Vol. 27.51.
Yoshimoto
, Y.
, Kinefuchi
, I.
, Mima
, T.
, Fukushima
, A.
, Tokumasu
, T.
, and Takagi
, S.
, “Bottom-up construction of interaction models of non-Markovian dissipative particle dynamics
,” Phys. Rev. E
88
(4
), 043305
(2013
).52.
Zhu
, Y.
, Dominy
, J. M.
, and Venturi
, D.
, “On the estimation of the Mori-Zwanzig memory integral
,” J. Math. Phys.
59
(10
), 103501
(2018
).53.
Zhu
, Y.
, Lei
, H.
, and Kim
, C.
, “Generalized second fluctuation-dissipation theorem in the nonequilibrium steady state: Theory and applications
,” preprint arXiv:2104.05222 (2021).54.
Zhu
, Y.
and Venturi
, D.
, “Faber approximation of the Mori–Zwanzig equation
,” J. Comput. Phys.
372
, 694
–718
(2018
).55.
Zhu
, Y.
and Venturi
, D.
, “Generalized Langevin equations for systems with local interactions
,” J. Stat. Phys.
178
, 1217
–1247
(2020
).56.
Zinn-Justin
, J.
, Quantum Field Theory and Critical Phenomena
, 4th ed. (Oxford University Press
, 2002
).57.
Zwanzig
, R.
, “Memory effects in irreversible thermodynamics
,” Phys. Rev.
124
(4
), 983
(1961
).58.
Zwanzig
, R.
, “Nonlinear generalized Langevin equations
,” J. Stat. Phys.
9
(3
), 215
–220
(1973
).© 2021 Author(s). Published under an exclusive license by AIP Publishing.
2021
Author(s)
You do not currently have access to this content.