S-Heun operators on linear and q-linear grids are introduced. These operators are special cases of Heun operators and are related to Sklyanin-like algebras. The continuous Hahn and big q-Jacobi polynomials are functions on which these S-Heun operators have natural actions. We show that the S-Heun operators encompass both the bispectral operators and Kalnins and Miller’s structure operators. These four structure operators realize special limit cases of the trigonometric degeneration of the original Sklyanin algebra. Finite-dimensional representations of these algebras are obtained from a truncation condition. The corresponding representation bases are finite families of polynomials: the para-Krawtchouk and q-para-Krawtchouk ones. A natural algebraic interpretation of these polynomials that had been missing is thus obtained. We also recover the Heun operators attached to the corresponding bispectral problems as quadratic combinations of the S-Heun operators.

1.
A. S.
Zhedanov
, “
‘Hidden symmetry’ of Askey Wilson polynomials
,”
Theor. Math. Phys.
89
,
1146
1157
(
1991
).
2.
D.
Bullock
and
J. H.
Przytycki
, “
Multiplicative structure of Kauffman bracket skein module quantizations
,”
Proc. Am. Math. Soc.
128
,
923
931
(
1999
); arXiv:math/9902117.
3.
T. H.
Koornwinder
, “
The relationship between Zhedanov’s algebra AW(3) and the double Affine Hecke algebra in the rank one case
,”
Symmetry, Integr. Geom.: Methods Appl.
3
,
063
(
2007
); arXiv:math/0612730.
4.
T. H.
Koornwinder
, “
Zhedanov’s algebra AW(3) and the double Affine Hecke algebra in the rank one case. II. The spherical subalgebra
,”
Symmetry, Integr. Geom.: Methods Appl.
4
,
052
(
2008
); arXiv:0711.2320v3.
5.
M.
Mazzocco
, “
Conuences of the Painleve equations, Cherednik algebras and q-Askey scheme
,”
Nonlinearity
29
,
2565
2608
(
2016
); arXiv:1307.6140.
6.
L.
Frappat
,
J.
Gaboriaud
,
E.
Ragoucy
, and
L.
Vinet
, “
The dual pair (Uq(su(1,1)),oq1/2(2n)), q-oscillators, and Askey-Wilson algebras
,”
J. Math. Phys.
61
,
041701
(
2020
); arXiv:1908.04277.
7.
J.
Gaboriaud
,
L.
Vinet
, and
S.
Vinet
, “
Howe duality and algebras of the Askey-Wilson type: An overview
,” arXiv:1911.08314 (
2019
).
8.
P.
Baseilhac
, “
Deformed Dolan-Grady relations in quantum integrable models
,”
Nucl. Phys. B
709
,
491
521
(
2005
); arXiv:hep-th/0404149v3.
9.
P.
Baseilhac
, “
An integrable structure related with tridiagonal algebras
,”
Nucl. Phys. B
705
,
605
619
(
2005
); arXiv:math-ph/0408025.
10.
P.
Baseilhac
and
K.
Koizumi
, “
A new (in)finite dimensional algebra for quantum integrable models
,”
Nucl. Phys. B
720
,
325
347
(
2005
); arXiv:math-ph/0503036.
11.
L.
Vinet
and
A.
Zhedanov
, “
Quasi-linear algebras and integrability (the Heisenberg picture)
,”
Symmetry, Integr. Geom.: Methods Appl.
4
,
015
(
2008
); arXiv:0802.0744.
12.
P.
Terwilliger
and
R.
Vidunas
, “
Leonard pairs and the Askey Wilson relations
,”
J. Algebra Appl.
03
,
411
426
(
2004
); arXiv:math/0305356.
13.
P.
Terwilliger
, “
The universal Askey Wilson algebra
,”
Symmetry, Integr. Geom.: Methods Appl.
7
,
069
(
2011
); arXiv:1104.2813.
14.
P.
Terwilliger
, “
The universal Askey Wilson algebra and DAHA of type (C1,C1)
,”
Symmetry, Integr. Geom.: Methods Appl.
9
,
047
(
2013
); arXiv:1202.4673.
15.
P.
Terwilliger
, “
The q-Onsager algebra and the universal Askey Wilson algebra
,”
Symmetry, Integr. Geom.: Methods Appl.
14
,
044
(
2018
); arXiv:1801.06083.
16.
Y. A.
Granovskii
and
A.
Zhedanov
, “
Hidden symmetry of the Racah and Clebsch-Gordan problems for the quantum algebra slq(2)
,”
J. Group Theor. Methods Phys.
1
,
161
171
(
1993
); arXiv:hep-th/9304138.
17.
H.-W.
Huang
, “
An embedding of the universal Askey Wilson algebra into Uq(sl2)Uq(sl2)Uq(sl2)
,”
Nucl. Phys. B
922
,
401
434
(
2017
); arXiv:1611.02130.
18.
E. G.
Kalnins
and
W.
Miller
, Jr.
, “
Symmetry techniques for q-series: Askey-Wilson polynomials
,”
Rocky Mt. J. Math.
19
,
223
230
(
1989
).
19.
E. G.
Kalnins
and
W.
Miller
, Jr.
, “
q-Series and orthogonal polynomials associated with Barnes’ first lemma
,” IMA Preprint Series,
1987
.
20.
W.
Miller
, Jr.
, “
A note on Wilson polynomials
,”
SIAM J. Math. Anal.
18
,
1221
1226
(
1987
).
21.
L.
Infeld
and
T. E.
Hull
, “
The factorization method
,”
Rev. Mod. Phys.
23
,
21
68
(
1951
).
22.
T. H.
Koornwinder
, “
The structure relation for Askey Wilson polynomials
,”
J. Comput. Appl. Math.
207
,
214
226
(
2007
); arXiv:math/0601303.
23.
A. S.
Gorsky
and
A. V.
Zabrodin
, “
Degenerations of Sklyanin algebra and Askey Wilson polynomials
,”
J. Phys. A: Math. Gen.
26
,
L635
L640
(
1993
); arXiv:hep-th/9303026.
24.
E. K.
Sklyanin
, “
Some algebraic structures connected with the Yang Baxter equation. Representations of quan-tum algebras
,”
Funct. Anal. Appl.
17
,
273
284
(
1983
).
25.
J.
Gaboriaud
,
S.
Tsujimoto
,
L.
Vinet
, and
A.
Zhedanov
, “
Degenerate Sklyanin algebras, Askey-Wilson polyno-mials and Heun operators
,”
J. Phys. A: Math. Theor.
53
,
445204
(
2020
); arXiv:2005.06961.
26.
M. E. H.
Ismail
and
E.
Koelink
, “
Spectral properties of operators using tridiagonalisation
,”
Anal. Appl.
10
,
327
343
(
2012
); arXiv:1108.5716.
27.
F. A.
Grünbaum
,
L.
Vinet
, and
A.
Zhedanov
, “
Tridiagonalization and the Heun equation
,”
J. Math. Phys.
58
,
031703
(
2017
); arXiv:1602.04840.
28.
F. A.
Grünbaum
, “
The bispectral problem: An overview
,” in
Special Functions 2000: Current Perspective and Future Directions
(
Springer
,
Dordrecht
,
2001
), pp.
129
140
.
29.
F. A.
Grünbaum
,
L.
Vinet
, and
A.
Zhedanov
, “
Algebraic Heun operator and band-time limiting
,”
Commun. Math. Phys.
364
,
1041
1068
(
2018
); arXiv:1711.07862.
30.
A. V.
Turbiner
, “
The Heun operator as a Hamiltonian
,”
J. Phys. A: Math. Theor.
49
,
26LT01
(
2016
); arXiv:1603.02053.
31.
D.
Slepian
, “
Some Comments on Fourier analysis, uncertainty and modeling
,”
SIAM Rev.
25
,
379
393
(
1983
).
32.
H. J.
Landau
, “
An overview of time and Frequency limiting
,” in
Fourier Techniques and Applications
(
Springer
,
Boston
,
1985
), pp.
201
220
.
33.
N.
Crampé
,
R. I.
Nepomechie
, and
L.
Vinet
, “
Free-Fermion entanglement and orthogonal polynomials
,”
J. Stat. Mech.: Theory Exp.
9
,
093101
(
2019
); arXiv:1907.00044.
34.
N.
Crampé
,
R. I.
Nepomechie
, and
L.
Vinet
, “
Entanglement in Fermionic chains and bispectrality
,” in
Roman Jackiw: 80th Birthday Festschrift
(
World Scientific
,
2020
), pp.
77
96
; arXiv:2001.10576.
35.
K.
Takemura
, “
Degenerations of Ruijsenaars-van Diejen operator and q-Painleve equations
,”
J. Integr. Syst.
2
,
1
27
(
2017
); arXiv:1608.07265.
36.
K.
Takemura
, “
On q-deformations of the Heun equation
,”
Symmetry, Integr. Geom.: Methods Appl.
14
,
061
(
2018
); arXiv:1712.09564.
37.
P.
Baseilhac
,
S.
Tsujimoto
,
L.
Vinet
, and
A.
Zhedanov
, “
The Heun-Askey-Wilson algebra and the Heun operator of Askey-Wilson type
,”
Ann. Henri Poincare
20
,
3091
3112
(
2019
); arXiv:1811.11407.
38.
P.
Baseilhac
and
R. A.
Pimenta
, “
Diagonalization of the Heun-Askey-Wilson operator, Leonard pairs and the algebraic Bethe ansatz
,”
Nucl. Phys. B
949
,
114824
(
2019
); arXiv:1909.02464.
39.
L.
Vinet
and
A.
Zhedanov
, “
The Heun operator of Hahn-type
,”
Proc. Am. Math. Soc.
147
,
2987
2998
(
2019
); arXiv:1808.00153.
40.
N.
Crampé
,
L.
Vinet
, and
A.
Zhedanov
, “
Heun algebras of Lie type
,”
Proc. Am. Math. Soc.
148
,
1079
1094
(
2020
); arXiv:1904.10643.
41.
S.
Tsujimoto
,
L.
Vinet
, and
A.
Zhedanov
, “
The rational Heun operator and Wilson biorthogonal functions
,” arXiv:1912.11571 (
2019
).
42.
P.
Baseilhac
,
L.
Vinet
, and
A.
Zhedanov
, “
The q-Heun operator of big q-Jacobi type and the q-Heun algebra
,”
Ramanujan J.
52
,
367
380
(
2020
); arXiv:1808.06695.
43.
G.
Bergeron
,
L.
Vinet
, and
A.
Zhedanov
, “
Signal processing, orthogonal polynomials, and Heun equations
,” in
AIMSVSW 2018: Orthogonal Polynomials
(
Birkhäuser
,
Cham
,
2020
), pp.
195
214
; arXiv:1903.00144.
44.
G.
Bergeron
,
N.
Crampé
,
S.
Tsujimoto
,
L.
Vinet
, and
A.
Zhedanov
, “
The Heun-Racah and Heun-Bannai-ito algebras
,”
J. Math. Phys.
61
,
081701
(
2020
); arXiv:2003.09558.
45.
L.
Vinet
and
A.
Zhedanov
, “
Para-Krawtchouk polynomials on a bi-lattice and a quantum spin chain with perfect state transfer
,”
J. Phys. A: Math. Theor.
45
,
265304
(
2012
); arXiv:1110.6475.
46.
J.-M.
Lemay
,
L.
Vinet
, and
A.
Zhedanov
, “
The para-Racah polynomials
,”
J. Math. Anal. Appl.
438
,
565
577
(
2016
); arXiv:1511.05215.
47.
V. X.
Genest
,
L.
Vinet
, and
A.
Zhedanov
, “
Quantum spin chains with fractional revival
,”
Ann. Phys.
371
,
348
367
(
2016
); arXiv:1507.05919.
48.
É.-O.
Bossé
and
L.
Vinet
, “
Coherent transport in photonic lattices: A survey of recent analytic results
,”
Symmetry, Integr. Geom.: Methods Appl.
13
,
074
(
2017
); arXiv:1705.04841.
49.
R.
Koekoek
,
P. A.
Lesky
, and
R. F.
Swarttouw
,
Hypergeometric Orthogonal Polynomials and Their q-Analogues
, Springer Monographs in Mathematics (
Springer
,
2010
), p.
578
.
50.
V. X.
Genest
,
M. E. H.
Ismail
,
L.
Vinet
, and
A.
Zhedanov
, “
Tridiagonalization of the hypergeometric operator and the Racah-Wilson algebra
,”
Proc. Am. Math. Soc.
144
,
4441
4454
(
2016
); arXiv:1506.07803.
51.
Y. I.
Granovskii
,
I. M.
Lutzenko
, and
A. S.
Zhedanov
, “
Mutual integrability, quadratic algebras, and dynamical symmetry
,”
Ann. Phys.
217
,
1
20
(
1992
).
52.
V. X.
Genest
,
L.
Vinet
, and
A.
Zhedanov
, “
The Racah algebra and superintegrable models
,”
J. Phys.:Conf. Ser.
512
,
012011
(
2014
); arXiv:1312.3874.
53.
N.
Iyudu
and
S.
Shkarin
, “
Classification of quadratic and cubic PBW algebras on three generators
,” arXiv:1806.06844 (
2018
).
54.
E. M.
Rains
, “
BCn-symmetric abelian functions
,”
Duke Math. J.
135
,
99
180
(
2006
); arXiv:math/0402113.
55.
J.-M.
Lemay
,
L.
Vinet
, and
A.
Zhedanov
, “
An analytic spin chain model with fractional revival
,”
J. Phys. A: Math. Theor.
49
,
335302
(
2016
); arXiv:1509.08965.
56.
T. H.
Koornwinder
and
M.
Mazzocco
, “
Dualities in the q-Askey scheme and degenerate DAHA
,”
Stud. Appl. Math.
141
,
424
473
(
2018
); arXiv:1803.02775.
57.
S.
Tsujimoto
,
L.
Vinet
, and
A.
Zhedanov
, “
Tridiagonal representations of the q-oscillator algebra and Askey-Wilson polynomials
,”
J. Phys. A: Math. Theor.
50
,
235202
(
2017
); arXiv:1612.04038.
58.
L. L.
Bruyn
and
S. P.
Smith
, “
Homogenized sl(2)
,”
Proc. Am. Math. Soc.
118
,
725
730
(
1993
).
59.
L. L.
Bruyn
,
S. P.
Smith
, and
M. V.
den Bergh
, “
Central extensions of three dimensional Artin-Schelter regular algebras
,”
Math. Z.
222
,
171
212
(
1996
).
60.
A.
Chirvasitu
,
S. P.
Smith
, and
L. Z.
Wong
, “
Non-commutative geometry of homogenized quantum sl(2,C)
,”
Pac. J. Math.
292
,
305
354
(
2018
); arXiv:1607.00481.
61.
J.-M.
Lemay
,
L.
Vinet
, and
A.
Zhedanov
, “
A q-generalization of the para-Racah polynomials
,”
J. Math. Anal. Appl.
462
,
323
336
(
2018
); arXiv:1708.03368.
You do not currently have access to this content.