For some metric spaces of self-adjoint operators, it is shown that the set of operators whose spectral measures have simultaneous zero upper-Hausdorff and one lower-packing dimension contains a dense Gδ subset. Applications include sets of limit-periodic operators.

1.
S. L.
Carvalho
and
C. R.
de Oliveira
, “
Correlation dimension Wonderland theorems
,”
J. Math. Phys.
57
,
063501
(
2016
).
2.
S. L.
Carvalho
and
C. R.
de Oliveira
, “
Generic quasilocalized and quasiballistic discrete Schrödinger operators
,”
Proc. Am. Math. Soc.
144
,
129
141
(
2016
).
3.
S. L.
Carvalho
and
C. R.
de Oliveira
, “
A characterization of singular packing subspaces with an application to limit-periodic operators
,”
Forum Math.
29
,
31
40
(
2017
).
4.
R.
del Rio
,
S.
Jitomirskaya
,
Y.
Last
, and
B.
Simon
, “
Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbation, and localization
,”
J. Anal. Math.
69
,
153
200
(
1996
).
5.
B.
Simon
, “
Operators with singular continuous spectrum: I. General operators
,”
Ann. Math. (2)
,
141
,
131
145
(
1995
).
6.
A.
Avila
, “
On the spectrum and Lyapunov exponent of limit-periodic Schrödinger operators
,”
Commun. Math. Phys.
288
,
907
918
(
2009
).
7.
P.
Mattila
,
Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability
(
Cambridge University Press
,
Cambridge
,
1999
).
8.
I.
Guarneri
and
H.
Schulz-Baldes
, “
Lower bounds on wave-packet propagation by packing dimensions of spectral measures
,”
Math. Phys. Electron. J.
5
,
1
16
(
1999
).
9.
C. A.
Rogers
and
S. J.
Taylor
, “
Functions continuous and singular with respect to a Hausdorff measure
,”
Mathematika
8
,
1
31
(
1961
).
10.
Y.
Last
, “
Quantum dynamics and decomposition of singular continuous spectra
,”
J. Funct. Anal.
142
,
406
445
(
1996
).
11.
L.-S.
Young
, “
Dimension, entropy and Lyapunov exponents
,”
Ergodic Theory Dyn. Syst.
2
,
109
124
(
1982
).
12.
D. J.
Daley
and
D.
Vere-Jones
,
An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods
(
Springer-Verlag
,
New York
,
2003
).
13.
E.
Habil
, “
Double sequences and double series
,”
IUG J. Nat. Stud.
14
,
219
233
(
2006
).
14.
J. C.
Oxtoby
, “
On two theorems of Parthasarathy and Kakutani concerning the shift transformation
,” in
Ergodic Theory (Proc. Internat. Sympos., Tulane Univ., New Orleans, La, 1961)
(
Academic Press
,
New York
,
1963
), pp.
203
215
.
15.
D.
Damanik
and
Z.
Gan
, “
Spectral properties of limit-periodic Schrödinger operators
,”
Commun. Pure Appl. Anal.
10
,
859
871
(
2011
).
16.
D.
Damanik
and
Z.
Gan
, “
Limit-periodic Schrödinger operators in the regime of positive Lyapunov exponents
,”
J. Funct. Anal.
258
,
4010
4025
(
2010
).
You do not currently have access to this content.