We consider charge transport for interacting many-body systems with a gapped ground state subspace that is finitely degenerate and topologically ordered. To any locality-preserving, charge-conserving unitary that preserves the ground state space, we associate an index that is an integer multiple of 1/p, where p is the ground state degeneracy. We prove that the index is additive under composition of unitaries. This formalism gives rise to several applications: fractional quantum Hall conductance, a fractional Lieb–Schultz–Mattis (LSM) theorem that generalizes the standard LSM to systems where the translation-invariance is broken, and the interacting generalization of the Avron–Dana–Zak relation between the Hall conductance and the filling factor.

1.
F. D. M.
Haldane
and
N.
Lecture
, “
Topological quantum matter
,”
Rev. Mod. Phys.
89
(
4
),
040502
(
2017
).
2.
R. B.
Laughlin
, “
Nobel lecture: Fractional quantization
,”
Rev. Mod. Phys.
71
(
4
),
863
(
1999
).
3.
D. J.
Thouless
,
M.
Kohmoto
,
M. P.
Nightingale
, and
M.
den Nijs
, “
Quantized Hall conductance in a two-dimensional periodic potential
,”
Phys. Rev. Lett.
49
(
6
),
405
408
(
1982
).
4.
Q.
Niu
,
D. J.
Thouless
, and
Y.-S.
Wu
, “
Quantized Hall conductance as a topological invariant
,”
Phys. Rev. B
31
(
6
),
3372
(
1985
).
5.
J. E.
Avron
,
R.
Seiler
, and
B.
Simon
, “
Homotopy and quantization in condensed matter physics
,”
Phys. Rev. Lett.
51
(
1
),
51
53
(
1983
).
6.
R. B.
Laughlin
, “
Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations
,”
Phys. Rev. Lett.
50
(
18
),
1395
(
1983
).
7.
N.
Read
and
E.
Rezayi
, “
Beyond paired quantum Hall states: Parafermions and incompressible states in the first excited Landau level
,”
Phys. Rev. B
59
(
12
),
8084
(
1999
).
8.
F. D. M.
Haldane
, “
Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states
,”
Phys. Rev. Lett.
51
(
7
),
605
(
1983
).
9.
X. -G.
Wen
, “
Vacuum degeneracy of chiral spin states in compactified space
,”
Phys. Rev. B
40
(
10
),
7387
(
1989
).
10.
X. -G.
Wen
,
F.
Wilczek
, and
A.
Zee
, “
Chiral spin states and superconductivity
,”
Phys. Rev. B
39
(
16
),
11413
(
1989
).
11.
G.
Moore
and
N.
Read
, “
Nonabelions in the fractional quantum hall effect
,”
Nucl. Phys. B
360
(
2-3
),
362
396
(
1991
).
12.
J.
Fröhlich
,
U. M.
Studer
, and
E.
Thiran
, “
A classification of quantum Hall fluids
,”
J. Stat. Phys.
86
(
3
),
821
897
(
1997
).
13.
A.
Kitaev
, “
Periodic table for topological insulators and superconductors
,”
AIP Conf. Proc.
1134
,
22
(
2009
).
14.
A. P.
Schnyder
,
S.
Ryu
,
A.
Furusaki
, and
A. W. W.
Ludwig
, “
Classification of topological insulators and superconductors in three spatial dimensions
,”
Phys. Rev. B
78
(
19
),
195125
(
2008
).
15.
P.
Heinzner
,
A.
Huckleberry
, and
M. R.
Zirnbauer
, “
Symmetry classes of disordered fermions
,”
Commun. Math. Phys.
257
(
3
),
725
771
(
2005
).
16.
X.
Chen
,
Z.-C.
Gu
, and
X.-G.
Wen
, “
Classification of gapped symmetric phases in one-dimensional spin systems
,”
Phys. Rev. B
83
(
3
),
035107
(
2011
).
17.
A. M.
Turner
,
F.
Pollmann
, and
E.
Berg
, “
Topological phases of one-dimensional fermions: An entanglement point of view
,”
Phys. Rev. B
83
(
7
),
075102
(
2011
).
18.
L.
Fidkowski
and
A.
Kitaev
, “
Topological phases of fermions in one dimension
,”
Phys. Rev. B
83
(
7
),
075103
(
2011
).
19.
D.
Gross
,
V.
Nesme
,
H.
Vogts
, and
R. F.
Werner
, “
Index theory of one dimensional quantum walks and cellular automata
,”
Commun. Math. Phys.
310
(
2
),
419
454
(
2012
).
20.
J. I.
Cirac
,
D.
Perez-Garcia
,
N.
Schuch
, and
F.
Verstraete
, “
Matrix product unitaries: Structure, symmetries, and topological invariants
,”
J. Stat. Mech.
2017
(
8
),
083105
.
21.
F.
Noether
, “
Über eine Klasse singulärer Integralgleichungen
,”
Math. Ann.
82
(
1
),
42
63
(
1920
).
22.
J.
Avron
,
R.
Seiler
, and
B.
Simon
, “
The index of a pair of projections
,”
J. Funct. Anal.
120
,
220
237
(
1994
).
23.
J.
Bellissard
,
A.
van Elst
, and
H.
Schulz‐ Baldes
, “
The noncommutative geometry of the quantum Hall effect
,”
J. Math. Phys.
35
(
10
),
5373
5451
(
1994
).
24.
D. J.
Thouless
, “
Quantization of particle transport
,”
Phys. Rev. B
27
(
10
),
6083
6087
(
1983
).
25.
E.
Prodan
and
H.
Schulz-Baldes
,
Bulk and Boundary Invariants for Complex Topological Insulators
(
Springer
,
2016
).
26.
J. E.
Avron
,
R.
Seiler
, and
B.
Simon
, “
Quantum Hall effect and the relative index for projections
,”
Phys. Rev. Lett.
65
(
17
),
2185
2188
(
1990
).
27.
H.
Katsura
and
T.
Koma
, “
The Z2 index of disordered topological insulators with time reversal symmetry
,”
J. Math. Phys.
57
(
2
),
021903
(
2016
).
28.
G.
De Nittis
and
H.
Schulz-Baldes
, “
Spectral flows of dilations of Fredholm operators
,”
Can. Math. Bull.
58
(
1
),
51
68
(
2015
).
29.
A.
Kitaev
, “
Anyons in an exactly solved model and beyond
,”
Ann. Phys.
321
,
2
111
(
2006
).
30.
S.
Bachmann
,
A.
Bols
,
W.
De Roeck
, and
M.
Fraas
, “
A many-body Fredholm index for ground state spaces and Abelian anyons
,”
Phys. Rev. B
101
,
085138
(
2020
).
31.
X. G.
Wen
, “
Topological orders in rigid states
,”
Int. J. Mod. Phys. B
04
(
02
),
239
271
(
1990
).
32.
S.
Bravyi
and
M. B.
Hastings
, “
A short proof of stability of topological order under local perturbations
,”
Commun. Math. Phys.
307
(
3
),
609
627
(
2011
).
33.
M. B.
Hastings
and
S.
Michalakis
, “
Quantization of Hall conductance for interacting electrons on a torus
,”
Commun. Math. Phys.
334
,
433
471
(
2015
).
34.
S.
Bachmann
,
A.
Bols
,
W.
De Roeck
, and
M.
Fraas
, “
A many-body index for quantum charge transport
,”
Commun. Math. Phys.
375
(
2
),
1249
1272
(
2020
).
35.
M. B.
Hastings
, “
Lieb-Schultz-Mattis in higher dimensions
,”
Phys. Rev. B
69
,
104431
(
2004
).
36.
B.
Nachtergaele
and
R.
Sims
, “
A multi-dimensional Lieb-Schultz-Mattis theorem
,”
Commun. Math. Phys.
276
,
437
472
(
2007
).
37.
I.
Dana
,
Y.
Avron
, and
J.
Zak
, “
Quantised Hall conductance in a perfect crystal
,”
J. Phys. C: Solid State Phys.
18
(
22
),
L679
(
1985
).
38.
Y.-M.
Lu
,
Y.
Ran
, and
M.
Oshikawa
, “
Filling-Enforced constraint on the quantized Hall conductivity on a periodic lattice
,”
Ann. Phys.
413
,
168060
(
2020
).
39.
A.
Matsugatani
,
Y.
Ishiguro
,
K.
Shiozaki
, and
H.
Watanabe
, “
Universal relation among the many-body Chern number, rotation symmetry, and filling
,”
Phys. Rev. Lett.
120
(
9
),
096601
(
2018
).
40.
S.
Bachmann
and
Y.
Ogata
, “
C*-algebraic index with application to the quantum Hall effect in the plane
” (unpublished) (
2020
).
41.
B.
Nachtergaele
and
R.
Sims
, “
Lieb-Robinson bounds and the exponential clustering theorem
,”
Commun. Math. Phys.
265
(
1
),
119
130
(
2006
).
42.
M. B.
Hastings
and
T.
Koma
, “
Spectral gap and exponential decay of correlations
,”
Commun. Math. Phys.
265
(
3
),
781
804
(
2006
).
43.
M. B.
Hastings
and
X.-G.
Wen
, “
Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance
,”
Phys. Rev. B
72
(
4
),
045141
(
2005
).
44.
S.
Bachmann
,
S.
Michalakis
,
B.
Nachtergaele
, and
R.
Sims
, “
Automorphic equivalence within gapped phases of quantum lattice systems
,”
Commun. Math. Phys.
309
(
3
),
835
871
(
2012
).
45.
W.
De Roeck
and
M.
Schütz
, “
Local perturbations perturb—Exponentially–locally
,”
J. Math. Phys.
56
(
6
),
061901
(
2015
).
46.
N.
Schuch
,
D.
Pérez-García
, and
I.
Cirac
, “
Classifying quantum phases using matrix product states and projected entangled pair states
,”
Phys. Rev. B
84
(
16
),
165139
(
2011
).
47.
Y.
Ogata
, “
A class of asymmetric gapped Hamiltonians on quantum spin chains and its characterization III
,”
Commun. Math. Phys.
352
(
3
),
1205
1263
(
2017
).
48.
D. R.
Hofstadter
, “
Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields
,”
Phys. Rev. B
14
(
6
),
2239
(
1976
).
49.
A.
Giuliani
,
V.
Mastropietro
, and
M.
Porta
, “
Universality of the Hall conductivity in interacting electron systems
,”
Commun. Math. Phys.
349
(
3
),
1107
1161
(
2017
).
50.
M. B.
Hastings
, “
The stability of free fermi Hamiltonians
,”
J. Math. Phys.
60
(
4
),
042201
(
2019
).
51.
W.
De Roeck
and
M.
Salmhofer
, “
Persistence of exponential decay and spectral gaps for interacting fermions
,”
Commun. Math. Phys.
365
,
773
796
(
2019
).
52.
The Quantum Hall Effect
, Graduate Text in Contemporary Physics, edited by
S. M.
Girvin
and
R.
Prange
(
Springer-Verlag
,
Berlin, Heidelberg, New York
,
1987
).
53.
S.
Bachmann
,
A.
Bols
,
W.
De Roeck
, and
M.
Fraas
, “
Note on linear response for interacting Hall insulators
,” in
Analytical Trends in Mathematical Physics
, Contemporary Mathematics Vol. 741 (
American Mathematical Society
,
2020
), pp.
23
58
.
54.
B.
Nachtergaele
,
R.
Sims
, and
A.
Young
, “
Lieb–Robinson bounds, the spectral flow, and stability of the spectral gap for lattice fermion systems
,” in
Mathematical Problems in Quantum Physics
, Contemporary Mathematics Vol. 717 (
American Mathematical Society
,
2018
), pp.
93
116
.
55.
O.
Bratteli
and
D. W.
Robinson
,
Operator Algebras and Quantum Statistical Mechanics 1: C*- and W*-Algebras, Symmetry Groups, Decomposition of States
, 2nd ed. (
Springer-Verlag
,
Berlin, Heidelberg, New York
,
1987
).
56.
O.
Bratteli
and
D. W.
Robinson
,
Operator Algebras and Quantum Statistical Mechanics 2: Equilibrium States
, Models in Quantum Statistical Mechanics, 2nd ed. (
Springer-Verlag
,
Berlin, Heidelberg, New York
,
1997
).
57.

Our notation differs here from the tradition of reserving this symbol for the smaller algebra of observables that are strictly supported in Z.

58.

As opposed to the “symmetry protected” topological order, which is not considered here.

59.

The adjective “topological” cannot be omitted here. In the case of spontaneous symmetry breaking with a local order parameter, the index can be rational; see Sec. VI.

60.

It is often stressed that this is a “large” gauge transformation, referring to the fact that it is not connected to the identity within the gauge group. However, on the lattice, it is not straightforward to make this distinction precise.

You do not currently have access to this content.