The main aim of the present paper by means of the quantum Markov chain (QMC) approach is to establish the existence of a phase transition for the quantum Ising model with competing XY interaction. In this scheme, the C*-algebraic approach is employed to the phase transition problem. Note that these kinds of models do not have one-dimensional analogs, i.e., the considered model persists only on trees. It turns out that if the Ising part interactions vanish, then the model with only competing XY-interactions on the Cayley tree of order two does not have a phase transition. By phase transition, we mean the existence of two distinct QMCs that are not quasi-equivalent and their supports do not overlap. Moreover, it is also shown that the QMC associated with the model has a clustering property, which implies that the von Neumann algebras corresponding to the states are factors.

1.
B. K.
Chakrabarti
,
A.
Dutta
, and
P.
Sen
,
Quantum Ising Phases and Transitions in Transverse Ising Models
(
Springer
,
Berlin
,
1996
).
2.
R.
Liebmann
,
Statistical Mechanics of Periodic Frustrated Ising Systems
(
Springer
,
Berlin
,
1986
).
3.
R.
Moessner
and
S. L.
Sondhi
, “
Ising models of quantum frustrations
,”
Phys. Rev. B
63
,
224401
(
2001
).
4.
S.
Sachdev
,
Quantum Phase Transitions
(
Cambridge University Press
,
2011
).
5.
N. S.
Ananikian
,
L. N.
Ananikyan
,
L. A.
Chakhmakhchyan
, and
O.
Rojas
, “
Thermal entanglement of a spin-1/2 Ising-Heisenberg model on a symmetrical diamond chain
,”
J. Phys.: Condens. Matter
24
,
256001
(
2012
).
6.
G. Y.
Chitov
and
C.
Gros
, “
Ordering in two-dimensional Ising model with competing interactions
,”
Low Temp. Phys.
31
,
722
734
(
2005
).
7.
S. A.
Owerre
, “
XY ring exchange model with frustrated Ising coupling on the triangular lattice
,”
Solid State Commun.
237-238
,
55
58
(
2005
).
8.
M.
Ostilli
, “
Cayley trees and Bethe lattices: A concise analysis for mathematicians and physicists
,”
Physica A
391
,
3417
3423
(
2012
).
9.
L.
Accardi
, “
On the noncommutative Markov property
,”
Funct. Anal. Appl.
9
,
1
8
(
1975
).
10.
L.
Accardi
and
F.
Fidaleo
, “
Quantum Markov fields
,”
Inf. Dim. Anal., Quantum Probab. Relat. Top.
06
,
123
138
(
2003
).
11.
R. L.
Dobrushin
, “
Description of Gibbsian random fields by means of conditional probabilities
,”
Probab. Theory Appl.
13
,
201
229
(
1968
).
12.
L.
Accardi
and
F.
Fidaleo
, “
Non homogeneous quantum Markov states and quantum Markov fields
,”
J. Funct. Anal.
200
,
324
347
(
2003
).
13.
M.
Biskup
,
L.
Chayes
, and
S.
Starr
, “
Quantum spin systems at positive temperature
,”
Commun. Math. Phys.
269
,
611
657
(
2007
).
14.
M.
Fannes
,
B.
Nachtergaele
, and
R. F.
Werner
, “
Finitely correlated states on quantum spin chains
,”
Commun. Math. Phys.
144
,
443
490
(
1992
).
15.
I.
Affleck
,
T.
Kennedy
,
E. H.
Lieb
, and
H.
Tasaki
, “
Valence bond ground states in isotropic quantum antiferromagnets
,”
Commun. Math. Phys.
115
,
477
528
(
1988
).
16.
C. R.
Laumann
,
S. A.
Parameswaran
, and
S. L.
Sondhi
, “
AKLT models with quantum spin glass ground states
,”
Phys. Rev. B
81
,
174204
(
2010
).
17.
D.
Nagaj
,
E.
Farhi
,
J.
Goldstone
,
P.
Shor
, and
I.
Sylvester
, “
Quantum transverse-field Ising model on an infinite tree from matrix product states
,”
Phys. Rev. B
77
,
214431
(
2008
).
18.
J. I.
Cirac
and
F.
Verstraete
, “
Renormalization and tensor product states in spin chains and lattices
,”
J. Phys. A: Math. Theor.
42
,
504004
(
2009
).
19.
N.
Datta
and
M.
Wilde
, “
Quantum Markov chains, sufficiency of quantum channels, and Renyi information measures
,”
J. Phys. A: Math. Theor.
48
,
50530
(
2015
).
20.
R.
Orús
, “
A practical introduction of tensor networks: Matrix product states and projected entangled pair states
,”
Ann. Phys.
349
,
117
158
(
2014
).
21.
H.-O.
Georgi
,
Gibbs Measures and Phase Transitions
, de Gruyter Studies in Mathematics Vol. 9 (
Walter de Gruyter
,
Berlin
,
1988
).
22.
H. A.
Kramers
and
G. H.
Wannier
, “
Statistics of the two-dimensional ferromagnet. Part II
,”
Phys. Rev.
60
,
263
(
1941
).
23.
C.
Preston
,
Gibbs States on Countable Sets
(
Cambridge University Press
,
London
,
1974
).
24.
F.
Spitzer
, “
Markov random fields on an infinite tree
,”
Ann. Probab.
3
,
387
398
(
1975
).
25.
S. R.
White
, “
Density matrix formulation for quantum renormalization groups
,”
Phys. Rev. Lett.
69
,
2863
(
1992
).
26.
A.
Spataru
, “
Construction of a Markov field on an infinite tree
,”
Adv. Math.
81
,
105
116
(
1990
).
27.
R. J.
Baxter
,
Exactly Solved Models in Statistical Mechanics
(
Academic
,
London, NY
,
1982
).
28.
M.
Fannes
,
B.
Nachtergaele
, and
R. F.
Werner
, “
Ground states of VBS models on Cayley trees
,”
J. Stat. Phys.
66
,
939
973
(
1992
).
29.
F.
Mukhamedov
,
A.
Barhoumi
, and
A.
Souissi
, “
Phase transitions for quantum Markov chains associated with Ising type models on a Cayley tree
,”
J. Stat. Phys.
163
,
544
567
(
2016
).
30.
F.
Mukhamedov
,
A.
Barhoumi
, and
A.
Souissi
, “
On an algebraic property of the disordered phase of the Ising model with competing interactions on a Cayley tree
,”
Math. Phys. Anal. Geom.
19
,
21
(
2016
).
31.
F.
Mukhamedov
and
U.
Rozikov
, “
On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras
,”
J. Stat. Phys.
114
,
825
848
(
2004
).
32.
F.
Mukhamedov
and
U.
Rozikov
, “
On Gibbs measures of models with competing ternary and binary interactions on a Cayley tree and corresponding von Neumann algebras II
,”
J. Stat. Phys.
119
,
427
446
(
2005
).
33.
F.
Mukhamedov
and
A.
Souissi
, “
Quantum Markov states on Cayley trees
,”
J. Math. Anal. Appl.
473
,
313
333
(
2019
).
34.
F.
Mukhamedov
and
A.
Souissi
, “
Types of factors generated by Quantum Markov chains of Ising model with competing interactions on the Cayley tree
,”
Inf. Dim. Anal., Quantum Probab. Relat. Top.
(to be published).
35.
H.
Araki
and
D. E.
Evans
, “
A C*-algebra approach to phase transition in the two-dimensional Ising model
,”
Commun. Math. Phys.
91
,
489
503
(
1983
).
36.
L.
Accardi
,
F.
Mukhamedov
, and
M.
Saburov
, “
On quantum Markov chains on Cayley tree III: Ising model
,”
J. Stat. Phys.
157
,
303
329
(
2014
).
37.
P. M.
Bleher
, “
Extremity of the disordered phase in the Ising model on the Bethe lattice
,”
Commun. Math. Phys.
128
,
411
419
(
1990
).
38.
U. A.
Rozikov
,
Gibbs Measures on Cayley Trees
(
World Scientific
,
Singapore
,
2013
).
39.
R. T.
Powers
and
E.
Størmer
, “
Free states of the canonical anticommutation relations
,”
Commun. Math. Phys.
16
,
1
33
(
1970
).
40.
B. M.
Baker
and
R. T.
Powers
, “
Product states of certain group-invariant AF-algebras
,”
J. Oper. Theor.
16
,
3
50
(
1986
).
41.
L.
Accardi
,
F.
Mukhamedov
, and
M.
Saburov
, “
On quantum Markov chains on Cayley tree I: Uniqueness of the associated chain with XY-model on the Cayley tree of order two
,”
Inf. Dim. Anal., Quantum Probab. Relat. Top.
14
,
443
463
(
2011
).
42.
F.
Mukhamedov
and
S.
El Gheteb
, “
Uniqueness of quantum Markov chain associated with XY-Ising model on the Cayley tree of order two
,”
Open Syst. Inf. Dyn.
24
(
02
),
175010
(
2017
).
43.
F.
Mukhamedov
and
S.
El Gheteb
, “
Clustering property of quantum Markov chain associated to XY-model with competing Ising interactions on the Cayley tree of order two
,”
Math. Phys. Anal. Geom.
22
,
10
(
2019
).
44.
L.
Accardi
,
F.
Mukhamedov
, and
M.
Saburov
, “
On quantum Markov chains on Cayley tree II: Phase transitions for the associated chain with XY-model on the Cayley tree of order three
,”
Ann. Henri Poincare
12
,
1109
1144
(
2011
).
45.
T.
Matsui
, “
On quasi-equivalence of quasi-free states of gauge invariant CAR algebras
,”
J. Oper. Theor.
17
,
281
290
(
1987
).
46.
Y. M.
Park
and
H. J.
Yoo
, “
Uniqueness and clustering properties of Gibbs states for classical and quantum unbounded spin systems
,”
J. Stat. Phys.
80
,
223
271
(
1995
).
47.
L.
Accardi
,
H.
Ohno
, and
F.
Mukhamedov
, “
Quantum Markov fields on graphs
,”
Inf. Dim. Anal., Quantum Probab. Relat. Top.
13
,
165
189
(
2010
).
48.
L.
Accardi
,
F.
Fidaleo
, and
F.
Mukhamedov
, “
Markov states and chains on the CAR algebra
,”
Inf. Dim. Anal., Quantum Probab. Relat. Top.
10
,
165
183
(
2007
).
49.
O.
Bratteli
and
D. W.
Robinson
,
Operator Algebras and Quantum Statistical Mechanics II
(
Springer-Verlag
,
New York
,
1987
).
50.

Recall that a representation π1 of a C*-algebra A is normal with respect to another representation π2, if there is a normal *-epimorphism ρ:π2(A)π1(A) such that ρ◦π2 = π1. Two representations π1 and π2 are called quasi-equivalent if π1 is normal with respect to π2, and conversely, π2 is normal with respect to π1. This means that there is an isomorphism α:π1(A)π2(A) such that α◦π1 = π2. Two states φ and ψ of A are said to be quasi-equivalent if the GNS representations πφ and πψ are quasi-equivalent.51 

51.
O.
Bratteli
and
D. W.
Robinson
,
Operator Algebras and Quantum Statistical Mechanics I
(
Springer-Verlag
,
New York
,
1987
).
You do not currently have access to this content.