In the present work, we are concerned with the development of a new uncertainty principle based on the wavelet transform in the Clifford analysis/algebra framework. We precisely derive a sharp Heisenberg-type uncertainty principle for the continuous Clifford wavelet transform.
REFERENCES
1.
B.
Amri
and L. T.
Rachdi
, “Beckner logarithmic uncertainty principle for the Riemann-Liouville operator
,” Int. J. Math.
24
(09
), 1350070
(2013
).2.
B.
Amri
and L. T.
Rachdi
, “Uncertainty principle in terms of entropy for the Riemann–Liouville operator
,” Bull. Malaysian Math. Sci. Soc.
39
(1
), 457
–481
(2015
).3.
S.
Arfaoui
, I.
Rezgui
, and A.
Ben Mabrouk
, Wavelet Analysis on the Sphere: Spheroidal Wavelets
(Walter de Gruyter
, 2017
), ISBN: 10: 311048109X, ISBN: 13: 978-3110481099.4.
S.
Arfaoui
and A.
Ben Mabrouk
, “Some ultraspheroidal monogenic Clifford Gegenbauer Jacobi polynomials and associated wavelets
,” Adv. Appl. Clifford Algebras
27
, 2287
–2306
(2017
).5.
S.
Arfaoui
and A.
Ben Mabrouk
, “Some old orthogonal polynomials revisited and associated wavelets: Two-parameters Clifford-Jacobi polynomials and associated spheroidal wavelets
,” Acta Appl. Math.
155
, 177
–195
(2018
).6.
S.
Arfaoui
, A.
Ben Mabrouk
, and C.
Cattani
, “New type of Gegenbauer–Hermite monogenic polynomials and associated Clifford wavelets
,” J. Math. Imaging Vis.
62
, 73
–97
(2020
).7.
S.
Arfaoui
, A.
Ben Mabrouk
, and C.
Cattani
, “New type of Gegenbauer-Jacobi-Hermite monogenic polynomials and associated continuous Clifford wavelet transform
,” Acta Appl. Math.
(2020
).8.
H.
Banouh
, A.
Ben Mabrouk
, and M.
Kesri
, “Clifford wavelet transform and the uncertainty principle
,” Adv. Appl. Clifford Algebras
29
, 106
(2019
).9.
F.
Brackx
, J. S. R.
Chisholm
, and V.
Soucek
, Clifford Analysis and Its Applications
, NATO Science Series, Series II: Mathematics, Physics and Chemistry Vol. 25 (Springer
, 2000
).10.
11.
F.
Brackx
, N.
De Schepper
, and F.
Sommen
, “The two-dimensional Clifford-Fourier transform
,” J. Math. Imaging
26
, 5
–18
(2006
).12.
F.
Brackx
, N.
De Schepper
, and F.
Sommen
, “The Fourier transform in Clifford analysis
,” Adv. Imaging Electron Phys.
156
, 55
–201
(2009
).13.
F.
Brackx
, N.
De Schepper
, and F.
Sommen
, “Clifford-Hermite and two-dimensional Clifford-Gabor filters for early vision
,” in (digital) Proceedings 17th International Conference on the Application of Computer Science and Mathematics in Architecture and Civil Engineering
, edited by K.
Gürlebeck
and C.
Könke
(Bauhaus-Universität Weimar
, 2006
).14.
F.
Brackx
, E.
Hitzer
, and S. J.
Sangwine
, “History of quaternion and Clifford-Fourier transforms and wavelets
,” in Quaternion and Clifford-Fourier Transforms and Wavelets
, Trends in Mathematics Vol. 27 (Springer, Basel
, 2013
), pp. XI
–XXVII
.15.
F.
Brackx
and F.
Sommen
, “The continuous wavelet transform in Clifford analysis
,” in Clifford Analysis and Its Applications
(Springer Netherlands
, 2001
), pp. 9
–26
.16.
R.
Bujack
, H.
De Bie
, N.
De Schepper
, and G.
Scheuermann
, “Convolution products for hypercomplex Fourier transforms
,” J. Math. Imaging Vis.
48
(3
), 606
–624
(2013
).17.
R.
Bujack
, G.
Scheuermann
, and E.
Hitzer
, “A general geometric Fourier transform
,” in Quaternion and Clifford Fourier Transforms and Wavelets
, Trends in Mathematics Vol. 27, edited by E.
Hitzer
and S. J.
Sangwine
(Birkhauser
, Basel
, 2013
), pp. 155
–176
.18.
R.
Bujack
, G.
Scheuermann
, and E.
Hitzer
, “A general geometric Fourier transform convolution theorem
,” Adv. Appl. Clifford Alg.
23
(1
), 15
–38
(2013
).19.
W. K.
Clifford
, “On the classification of geometric algebras
,” in Mathematical Papers
(MacMillan, London
, 1882
), pp. 397
–401
.20.
S.
Dahkle
, G.
Kutyniok
, P.
Maass
, C.
Sagiv
, H.-G.
Stark
, and G.
Teschke
, “The uncertainty principle associated with the continuous shearlet transform
,” Int. J. Wavelets, Multiresol. Inform. Process.
6
(2
), 157
–181
(2008
).21.
R.
Delanghe
, “Clifford analysis: History and perspective
,” Comput. Methods Funct. Theory
1
(1
), 107
–153
(2001
).22.
H.
De Bie
, “Clifford algebras, Fourier transforms and quantum mechanics
,” Math. Method. Appl. Sci.
35
(18
), 2198
–2228
(2012
).23.
H.
De Bie
and Y.
Xu
, “On the Clifford-Fourier transform
,” Int. Math. Res.
22
, 5123
–5163
(2011
).24.
N.
De Schepper
, “Multi-dimensional continuous wavelet transforms and generalized Fourier transforms in Clifford analysis
,” Ph.D. thesis, Ghent University
, 2006
.25.
N.
Dian Tunjung
, A.
Zainal Arifin
, and R.
Soelaiman
, “Medical image segmentation using generalized Gradient vector flow and Clifford geometric algebra
,” in International Conference on Biomedical Engineering, Surabaya, Indonesia
(2008
), p. 5
.26.
P. A. M.
Dirac
, “The quantum theory of the electron
,” Proc. R. Soc. London, Ser. A
117
(778
), 610
–624
(1928
).27.
Y.
El Haoui
and S.
Fahlaoui
, “The continuous quaternion algebra-valued wavelet transform and the associated uncertainty principle
,” arXiv:1902.08461 (2019
).28.
Y.
El Haoui
, S.
Fahlaoui
, and E.
Hitzer
, “Generalized uncertainty principles associated with the quaternionic offset linear canonical transform
,” arXiv:1807.04068v2 [math.CA] (2019
).29.
Y.
El Haoui
and S.
Fahlaoui
, “Donoho-Stark’s uncertainty principles in real Clifford algebras
,” Adv. Appl. Clifford Al.
29
, 94
(2019
).30.
H. G.
Feichtinger
and K.
Gröchenig
, “Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view
,” Wavelets
2
, 359
–398
(1992
).31.
A.
Grossmann
, J.
Morlet
, and T.
Paul
, “Transforms associated to square integrable group representations. II: Examples
,” Ann. l’IHP Phys. Théor.
45
(3
), 293
–309
(1986
).32.
A.
Grossmann
and J.
Morlet
, “Decomposition of hardy functions into square integrable wavelets of constant shape
,” SIAM J. Math. Anal.
15
, 723
–736
(1984
).33.
W. R.
Hamilton
, “On a new species of imaginary quantities connected with a theory of quaternions
,” in Proc. R. Irish Acad.
2
, 424
–434
(1844
).34.
35.
W.
Heisenberg
, “Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik
,” Z. Phys.
43
, 172
–198
(1927
).36.
W.
Heisenberg
, “Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik
,” in Original Scientific Papers Wissenschaftliche Originalarbeiten
(Springer Berlin Heidelberg
, 1985
), pp. 478
–504
.37.
E.
Hitzer
, “New developments in Clifford Fourier transforms
,” in Advances in Applied and Pure Mathematics
[Proceedings of the 2014 International Conference on Pure Mathematics, Applied Mathematics, Computational Methods (PMAMCM 2014), Santorini Island, Greece, July 17–21, 2014] Mathematics and Computers in Science and Engineering Series Vol. 29, edited by N. E.
Mastorakis
, P. M.
Pardalos
, R. P.
Agarwal
, and L.
Kocinac
(Dekker
, 2014
), pp. 19
–25
.38.
E.
Hitzer
, “Clifford (geometric) algebra wavelet transform
,” in Proceedings of the GraVisMa 2009, Plzen, Czech Republic, 02–04 September 2009
, edited by V.
Skala
and D.
Hildenbrand
(Vaclav Skala-Union Agency
, 2009
), pp. 94
–101
.39.
E.
Hitzer
, “Directional uncertainty principle for quaternion Fourier transform
,” Adv. Appl. Clifford Alg.
20
, 271
–284
(2010
).40.
E.
Hitzer
and B.
Mawardi
, “Uncertainty principle for the Clifford-geometric algebra based on Clifford Fourier transform
,” in International Conference on Numerical Analysis and Applied Mathematics 2005
, edited by T. E.
Simos
, G.
Sihoyios
, and C.
Tsitouras
(Wiley-VCH, Weinheim
, 2005
), pp. 922
–925
.41.
E.
Hitzer
, “Tutorial on Fourier transformations and wavelet transformations in Clifford geometric algebra
,” in Lecture Notes of the International Workshop for Computational Science with Geometric Algebra (FCSGA2007)
, edited by K.
Tachibana
(Nagoya University
, Japan
, 2007
), pp. 65
–87
.42.
P.
Jorgensen
and F.
Tian
, Non-Commutative Analysis
(World Scientific Publishing Company
, 2017
).43.
K. I.
Kou
, J.-Y.
Ou
, and J.
Morais
, “On uncertainty principle for quaternionic linear canonical transform
,” Abst. Appl. Anal.
2013
, 725952
.44.
G.
Ma
and J.
Zhao
, “Quaternion ridgelet transform and curvelet transform
,” Adv. Appl. Clifford Algebras
28
, 80
(2018
).45.
B.
Mawardi
, “Construction of quaternion-valued wavelets
,” Matematika
26
(1
), 107
–114
(2010
).46.
B.
Mawardi
and A.
Ryuichi
, “A simplified proof of uncertainty principle for quaternion linear canonical transform
,” Abst. Appl. Anal.
2016
, 5874930
.47.
B.
Mawardi
and R.
Ashino
, “Logarithmic uncertainty principle for quaternion linear canonical transform
,” in Proceedings of the 2016 International Conference on Wavelet Analysis and Pattern Recognition, Jeju, South Korea
(IEEE
, 2016
), p. 6
.48.
B.
Mawardi
and R.
Ashino
, “A variation on uncertainty principle and logarithmic uncertainty principle for continuous quaternion wavelet transforms
,” Abst. Appl. Anal.
2017
, 3795120
.49.
B.
Mawardi
and E.
Hitzer
, “Clifford algebra Cl(3, 0)-valued wavelets and uncertainty inequality for Clifford Gabor wavelet transformation
,” in Preprints of Meeting of the Japan Society for Industrial and Applied Mathematics
(Tsukuba University
, Tsukuba, Japan
, 2006
), pp. 64
–65
.50.
B.
Mawardi
and E.
Hitzer
, “Clifford algebra Cl(3, 0)-valued wavelet transformation, Clifford wavelet uncertainty inequality and Clifford Gabor wavelets
,” Int. J. Wavelets, Multiresol. Inform. Process.
5
(6
), 997
–1019
(2007
).51.
B.
Mawardi
and E.
Hitzer
, “Clifford Fourier transformation and uncertainty principle for the Clifford geometric algebra Cl3,0
,” Adv. Appl. Clifford Alg.
16
, 41
–61
(2006
).52.
B.
Mawardi
and E.
Hitzer
, “Clifford Fourier transform on multivector Fields and uncertainty principles for dimensions n = 2(mod 4) and n = 3(mod 4)
,” Adv. Appl. Clifford Alg.
18
, 715
–736
(2008
).53.
B.
Mawardi
, E.
Hitzer
, A.
Hayashi
, and R.
Ashino
, “An uncertainty principle for quaternion Fourier transform
,” Comput. Math. Appl.
56
, 2398
–2410
(2008
).54.
B.
Mawardi
, R.
Ashino
, and R.
Vaillancourt
, “Two-dimensional quaternion wavelet transform
,” Appl. Math. Comput.
218
, 10
–21
(2011
).55.
K.
Nagata
and T.
Nakamura
, “Violation of Heisenberg’s uncertainty principle
,” Open Access Library J.
2
, e1797
(2015
).56.
L. T.
Rachdi
and F.
Meherzi
, “Continuous wavelet transform and uncertainty principle related to the spherical mean operator
,” Mediterr. J. Math.
14
(1
), 11
(2016
).57.
L. T.
Rachdi
, B.
Amri
, and A.
Hammami
, “Uncertainty principles and time frequency analysis related to the Riemann–Liouville operator
,” Ann. Univ. Ferrara
65
, 139
(2018
).58.
L. T.
Rachdi
and H.
Herch
, “Uncertainty principles for continuous wavelet transforms related to the Riemann–Liouville operator
,” Ric. Mat.
66
(2
), 553
–578
(2017
).59.
D.
Rizo-Rodríguez
, H.
Méndez-Vázquez
, and E.
García-Reyes
, “Illumination invariant face recognition using quaternion-based correlation Filters
,” J. Math. Imaging Vis.
45
, 164
–175
(2013
).60.
K.
Sau
, R. K.
Basak
, and A.
Chanda
, “Image compression based on block truncation coding using Clifford algebra
,” Proc. Technol.
10
, 699
–706
(2013
).61.
D.
Sen
, “The uncertainty relations in quantum mechanics
,” Current Science
107
(2
), 203
–218
(2018
).62.
F.
Sommen
and H.
De Schepper
, Introductory Clifford Analysis
(Springer
, Basel
, 2015
), pp. 1
–27
.63.
R.
Soulard
and P.
Carré
, “Characterization of color images with multiscale monogenic maxima
,” IEEE Trans. Pattern Anal. Mach. Intell.
40
(10
), 2289
–2302
(2018
).64.
P. A.
Stabnikov
, “Geometric interpretation of the uncertainty principle
,” Nat. Sci.
11
(5
), 146
–148
(2019
).65.
L.
Wietzke
and G.
Sommer
, “The signal multi-vector
,” J. Math. Imaging Vis.
37
, 132
–150
(2010
).66.
67.
Y.
Yang
, P.
Dang
, and T.
Qian
, “Stronger uncertainty principles for hypercomplex signals
,” Complex Var. Elliptic Equations
60
(12
), 1696
–1711
(2015
).68.
Y.
Yang
and K.
Ian Kou
, “Uncertainty principles for hypercomplex signals in the linear canonical transformdomains
,” Signal Process.
95
, 67
–75
(2014
).69.
C.
Zou
and K. I.
Kou
, “Hypercomplex signal energy concentration in the spatial and quaternionic linear canonical Frequency domains
,” arXiv:1609.00890 (2016
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.