We continue to develop the method for creation and annihilation of contour singularities in the ¯-spectral data for the two-dimensional Schrödinger equation at fixed energy. Our method is based on the Moutard-type transforms for generalized analytic functions. In this article, we show that this approach successfully works for point potentials.

1.
L. D.
Faddeev
, “
Growing solutions of the Schrödibger equation
,”
Dokl. Akad. Nauk SSSR
165
,
514
517
(
1965
) (in Russian) [Sov. Phys. Dokl. 10, 1033–1035 (1965) (in English)].
2.
L. D.
Faddeev
, “
Inverse problem of quantum scattering theory. II
,”
Itogi Nauki i Tekhniki. Sovr. Probl. Math. VINITI
3
,
93
180
(
1974
) (in Russian) [J. Sov. Math.5(3), 334–396 (1976) (in English)].
3.
P. G.
Grinevich
, “
The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy
,”
Usp. Mat. Nauk.
55
(
6(336)
),
3
70
(
2000
) (in Russian) [Russ. Math. Surv. 55(6), 1015–1083 (2000) (in English)].
4.
G. M.
Henkin
and
R. G.
Novikov
, “
The ¯-equation in the multidimensional inverse scattering problem
,”
Usp. Mat. Nauk.
42
(
3(255)
),
93
152
(
1987
) (in Russian) [Russ. Math. Surv. 42(3), 109–180 (1987) (in English)].
5.
R. G.
Novikov
, “
The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator
,”
J. Funct. Anal.
103
(
2
),
409
463
(
1992
).
6.
P. G.
Grinevich
and
S. P.
Novikov
, “
Two-dimensional “inverse scattering problem” for negative energies and generalized-analytic functions. 1. Energies below the ground state
,”
Funct. Anal. i ego Pril.
22
(
1
),
23
33
(
1988
) (in Russian) [Funct. Anal. Appl. 22, 19–27 (1988) (in English)].
7.
L.
Bers
,
Theory of Pseudo-Analytic Functions
(
Courant Institute of Mathematical Sciences; New York University, Institute for Mathematics and Mechanics
,
1953
).
8.
I. N.
Vekua
,
Generalized Analytic Functions
(
Pergamon Press
,
1962
).
9.
A. P.
Veselov
and
S. P.
Novikov
, “
Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations
,”
Sov. Math. Dokl.
30
,
588
591
(
1984
).
10.
R. G.
Novikov
,
Multidimensional inverse spectral problem for the equation −Δψ + (v(x) − Eu(x))ψ = 0
,”
Funct. Anal. Appl.
22
(
4
),
263
272
(
1988
).
11.
M. I.
Isayev
and
R. G.
Novikov
, “
Reconstruction of a potential from the impedance boundary map
,”
Eurasian J. Math. Comput. Appl.
1
(
1
),
5
28
(
2013
).
12.
P. G.
Grinevich
and
R. G.
Novikov
, “
Moutard transform for generalized analytic functions
,”
J. Geom. Anal.
26
(
4
),
2984
2995
(
2016
).
13.
P. G.
Grinevich
and
R. G.
Novikov
, “
Moutard transform approach to generalized analytic functions with contour poles
,”
Bull. Sci. Math.
140
(
6
),
638
656
(
2016
).
14.
P. G.
Grinevich
and
R. G.
Novikov
, “
Generalized analytic functions, Moutard-type transforms, and holomorphic maps
,”
Funct. Anal. Appl.
50
(
2
),
150
152
(
2016
).
15.
I. A.
Taimanov
, “
Blowing up solutions of the modified Novikov-Veselov equation and minimal surfaces
,”
Theor. Math. Phys.
182
(
2
),
173
181
(
2015
).
16.
I. A.
Taimanov
, “
The Moutard transformation of two-dimensional Dirac operators and Möbius geometry
,”
Math. Notes
97
(
1
),
124
135
(
2015
).
17.
A.
Doliwa
,
P.
Grinevich
,
M.
Nieszporski
, and
P. M.
Santini
, “
Integrable lattices and their sublattices: From the discrete Moutard (discrete Cauchy-Riemann) 4-point equation to the self-adjoint 5-point scheme
,”
J. Math. Phys.
48
,
013513
(
2007
).
18.
V. B.
Matveev
and
M. A.
Salle
,
Darboux Transformations and Solitons
, Springer Series in Nonlinear Dynamics (
Springer-Verlag
,
Berlin
,
1991
).
19.
T. F.
Moutard
, “
Sur la construction des équations de la forme 1z2zxy=λ(x,y) qui admettenent une intégrale générale explicite
,”
J. Ec. Polytech.
45
,
1
11
(
1878
).
20.
J. J. C.
Nimmo
and
W. K.
Schief
, “
Superposition principles associated with the Moutard transformation: An integrable discretization of a 2+1-dimensional sine-Gordon system
,”
Proc. R. Soc. London, Ser. A
453
,
255
279
(
1997
).
21.
I. A.
Taimanov
and
S. P.
Tsarev
, “
On the Moutard transformation and its applications to spectral theory and soliton equations
,”
Sovrem. Mat. Fundam. Napravl.
35
,
101
117
(
2010
) (in Russian).
22.
D.
Yu
,
Q. P.
Liu
, and
S.
Wang
, “
Darboux transformation for the modified Veselov-Novikov equation
,”
J. Phys. A: Math. Gen.
35
(
16
),
3779
3786
(
2002
).
23.
A. L.
Buckhgeim
, “
Recovering a potential from Cauchy data in the two-dimensional case
,”
J. Inverse Ill-Posed Probl.
16
(
1
),
19
33
(
2008
).
24.
E. L.
Lakshtanov
,
R. G.
Novikov
, and
B. R.
Vainberg
, “
A global Riemann–Hilbert problem for two-dimensional inverse scattering at fixed energy
,”
Rend. Inst. Mat. Univ. Trieste
48
,
21
47
(
2016
).
25.
P. G.
Grinevich
and
R. G.
Novikov
, “
Faddeev eigenfunctions for point potentials in two dimensions
,”
Phys. Lett. A
376
,
1102
1106
(
2012
).
26.
S.
Albeverio
,
F.
Gesztesy
,
R.
Høegh-Krohn
, and
H.
Holden
,
Solvable Models in Quantum Mechanics
, Texts and Monographs in Physics (
Springer-Verlag
,
New York
,
1988
).
You do not currently have access to this content.