We continue to develop the method for creation and annihilation of contour singularities in the -spectral data for the two-dimensional Schrödinger equation at fixed energy. Our method is based on the Moutard-type transforms for generalized analytic functions. In this article, we show that this approach successfully works for point potentials.
REFERENCES
1.
L. D.
Faddeev
, “Growing solutions of the Schrödibger equation
,” Dokl. Akad. Nauk SSSR
165
, 514
–517
(1965
) (in Russian) [Sov. Phys. Dokl. 10, 1033–1035 (1965) (in English)].2.
L. D.
Faddeev
, “Inverse problem of quantum scattering theory. II
,” Itogi Nauki i Tekhniki. Sovr. Probl. Math. VINITI
3
, 93
–180
(1974
) (in Russian) [J. Sov. Math. 5(3), 334–396 (1976) (in English)].3.
P. G.
Grinevich
, “The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy
,” Usp. Mat. Nauk.
55
(6(336)
), 3
–70
(2000
) (in Russian) [Russ. Math. Surv. 55(6), 1015–1083 (2000) (in English)].4.
G. M.
Henkin
and R. G.
Novikov
, “The -equation in the multidimensional inverse scattering problem
,” Usp. Mat. Nauk.
42
(3(255)
), 93
–152
(1987
) (in Russian) [Russ. Math. Surv. 42(3), 109–180 (1987) (in English)].5.
R. G.
Novikov
, “The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator
,” J. Funct. Anal.
103
(2
), 409
–463
(1992
).6.
P. G.
Grinevich
and S. P.
Novikov
, “Two-dimensional “inverse scattering problem” for negative energies and generalized-analytic functions. 1. Energies below the ground state
,” Funct. Anal. i ego Pril.
22
(1
), 23
–33
(1988
) (in Russian) [Funct. Anal. Appl. 22, 19–27 (1988) (in English)].7.
L.
Bers
, Theory of Pseudo-Analytic Functions
(Courant Institute of Mathematical Sciences; New York University, Institute for Mathematics and Mechanics
, 1953
).8.
9.
A. P.
Veselov
and S. P.
Novikov
, “Finite-zone, two-dimensional, potential Schrödinger operators. Explicit formulas and evolution equations
,” Sov. Math. Dokl.
30
, 588
–591
(1984
).10.
R. G.
Novikov
, Multidimensional inverse spectral problem for the equation −Δψ + (v(x) − Eu(x))ψ = 0
,” Funct. Anal. Appl.
22
(4
), 263
–272
(1988
).11.
M. I.
Isayev
and R. G.
Novikov
, “Reconstruction of a potential from the impedance boundary map
,” Eurasian J. Math. Comput. Appl.
1
(1
), 5
–28
(2013
).12.
P. G.
Grinevich
and R. G.
Novikov
, “Moutard transform for generalized analytic functions
,” J. Geom. Anal.
26
(4
), 2984
–2995
(2016
).13.
P. G.
Grinevich
and R. G.
Novikov
, “Moutard transform approach to generalized analytic functions with contour poles
,” Bull. Sci. Math.
140
(6
), 638
–656
(2016
).14.
P. G.
Grinevich
and R. G.
Novikov
, “Generalized analytic functions, Moutard-type transforms, and holomorphic maps
,” Funct. Anal. Appl.
50
(2
), 150
–152
(2016
).15.
I. A.
Taimanov
, “Blowing up solutions of the modified Novikov-Veselov equation and minimal surfaces
,” Theor. Math. Phys.
182
(2
), 173
–181
(2015
).16.
I. A.
Taimanov
, “The Moutard transformation of two-dimensional Dirac operators and Möbius geometry
,” Math. Notes
97
(1
), 124
–135
(2015
).17.
A.
Doliwa
, P.
Grinevich
, M.
Nieszporski
, and P. M.
Santini
, “Integrable lattices and their sublattices: From the discrete Moutard (discrete Cauchy-Riemann) 4-point equation to the self-adjoint 5-point scheme
,” J. Math. Phys.
48
, 013513
(2007
).18.
V. B.
Matveev
and M. A.
Salle
, Darboux Transformations and Solitons
, Springer Series in Nonlinear Dynamics (Springer-Verlag
, Berlin
, 1991
).19.
T. F.
Moutard
, “Sur la construction des équations de la forme qui admettenent une intégrale générale explicite
,” J. Ec. Polytech.
45
, 1
–11
(1878
).20.
J. J. C.
Nimmo
and W. K.
Schief
, “Superposition principles associated with the Moutard transformation: An integrable discretization of a 2+1-dimensional sine-Gordon system
,” Proc. R. Soc. London, Ser. A
453
, 255
–279
(1997
).21.
I. A.
Taimanov
and S. P.
Tsarev
, “On the Moutard transformation and its applications to spectral theory and soliton equations
,” Sovrem. Mat. Fundam. Napravl.
35
, 101
–117
(2010
) (in Russian).22.
D.
Yu
, Q. P.
Liu
, and S.
Wang
, “Darboux transformation for the modified Veselov-Novikov equation
,” J. Phys. A: Math. Gen.
35
(16
), 3779
–3786
(2002
).23.
A. L.
Buckhgeim
, “Recovering a potential from Cauchy data in the two-dimensional case
,” J. Inverse Ill-Posed Probl.
16
(1
), 19
–33
(2008
).24.
E. L.
Lakshtanov
, R. G.
Novikov
, and B. R.
Vainberg
, “A global Riemann–Hilbert problem for two-dimensional inverse scattering at fixed energy
,” Rend. Inst. Mat. Univ. Trieste
48
, 21
–47
(2016
).25.
P. G.
Grinevich
and R. G.
Novikov
, “Faddeev eigenfunctions for point potentials in two dimensions
,” Phys. Lett. A
376
, 1102
–1106
(2012
).26.
S.
Albeverio
, F.
Gesztesy
, R.
Høegh-Krohn
, and H.
Holden
, Solvable Models in Quantum Mechanics
, Texts and Monographs in Physics (Springer-Verlag
, New York
, 1988
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.