We prove a theorem on singular symplectic cotangent bundle reduction in the Fréchet setting and apply it to Yang–Mills–Higgs theory with special emphasis on the Higgs sector of the Glashow–Weinberg–Salam model. For the latter model, we give a detailed description of the reduced phase space and show that the singular structure is encoded in a finite-dimensional Lie group action.

1.
G.
’t Hooft
,
50 Years of Yang-Mills Theory
(
World Scientific
,
2005
), ISBN: 9812560076.
2.
A.
Jaffe
and
E.
Witten
, “
Quantum Yang–Mills theory
,” URL: http://www.claymath.org/sites/default/files/yangmills.pdf.
3.
J.
Kogut
and
L.
Susskind
, “
Hamiltonian formulation of Wilson’s lattice gauge theories
,”
Phys. Rev. D
11
(
2
),
395
408
(
1975
).
4.
R.
Balian
,
J. M.
Drouffe
, and
C.
Itzykson
, “
Gauge fields on a lattice. I. General outlook
,”
Phys. Rev. D
10
(
10
),
3376
3395
(
1974
).
5.
J.
Kijowski
and
G.
Rudolph
, “
On the Gauss law and global charge for quantum chromodynamics
,”
J. Math. Phys.
43
(
4
),
1796
1808
(
2002
); arXiv:hep-th/0104052.
6.
J.
Kijowski
and
G.
Rudolph
, “
Charge superselection sectors for QCD on the lattice
,”
J. Math. Phys.
46
(
3
),
032303
(
2005
); arXiv:hep-th/0404155.
7.
H.
Grundling
and
G.
Rudolph
, “
Dynamics for QCD on an infinite lattice
,”
Commun. Math. Phys.
349
(
3
),
1163
1202
(
2017
).
8.
J.
Marsden
and
A.
Weinstein
, “
Reduction of symplectic manifolds with symmetry
,”
Rep. Math. Phys.
5
(
1
),
121
130
(
1974
).
9.
R.
Sjamaar
and
E.
Lerman
, “
Stratified symplectic spaces and reduction
,”
Ann. Math.
134
(
2
),
375
422
(
1991
) (in English).
10.
C.
Emmrich
and
H.
Römer
, “
Orbifolds as configuration spaces of systems with gauge symmetries
,”
Commun. Math. Phys.
129
(
1
),
69
94
(
1990
) (in English).
11.
G.
Rudolph
and
M.
Schmidt
,
Differential Geometry and Mathematical Physics. Part II. Fibre Bundles, Topology and Gauge Fields
(
Springer
,
2017
), ISBN: 978-94-024-0958-1.
12.
J.
Huebschmann
,
G.
Rudolph
, and
M.
Schmidt
, “
A gauge model for quantum mechanics on a stratified space
,”
Commun. Math. Phys.
286
(
2
),
459
494
(
2009
) (in English).
13.
J. E.
Marsden
 et al.,
Hamiltonian Reduction by Stages
, Lecture Notes in Mathematics Vol. 1913 (
Springer
,
2007
), ISBN: 978-3-540-72469-8.
14.
M.
Perlmutter
,
M.
Rodríguez-Olmos
, and
M. E.
Sousa-Dias
, “
On the geometry of reduced cotangent bundles at zero momentum
,”
J. Geom. Phys.
57
(
2
),
571
596
(
2007
); arXiv:math/0310437.
15.
T.
Schmah
, “
A cotangent bundle slice theorem
,”
Differ. Geom. Appl.
25
(
1
),
101
124
(
2007
); arXiv:math/0409148v1.
16.
M.
Rodríguez-Olmos
and
M.
Teixidó-Román
, “
The Hamiltonian tube of a cotangent-lifted action
,”
J. Symplectic Geom.
15
(
3
),
803
852
(
2017
); arXiv:1410.3697 [math.SG].
17.
T.
Diez
and
G.
Rudolph
, “
Slice theorem and orbit type stratification in infinite dimensions
,”
Differ. Geom. Appl.
65
,
176
211
(
2019
); arXiv:1812.04698 [math.DG].
18.
W.
Kondracki
and
J.
Rogulski
, “
On the stratification of the orbit space for the action of automorphisms on connections
,” in
Dissertationes Mathematicae
(
Panstwowe Wydawnictwo Naukowe
,
Warszawa
,
1986
), Vol. 250.
19.
G.
Rudolph
,
M.
Schmidt
, and
I. P.
Volobuev
, “
Classification of gauge orbit types for SU(n)-Gauge theories
,”
Math. Phys. Anal. Geom.
5
(
3
),
201
241
(
2002
) (in English); arXiv:0003044 [math-ph].
20.
G.
Rudolph
,
M.
Schmidt
, and
I. P.
Volobuev
, “
Partial ordering of gauge orbit types for SUn-gauge theories
,”
J. Geom. Phys.
42
(
1-2
),
106
138
(
2002
); arXiv:0009018 [math-ph].
21.
G.
Rudolph
,
M.
Schmidt
, and
I. P.
Volobuev
, “
On the gauge orbit space stratification: A review
,”
J. Phys. A: Math. Gen.
35
(
28
),
R1
R50
(
2002
); arXiv:0203027 [hep-th].
22.
A.
Hertsch
,
G.
Rudolph
, and
M.
Schmidt
, “
On the gauge orbit types for theories with classical compact gauge group
,”
Rep. Math. Phys.
66
(
3
),
331
353
(
2010
).
23.
A.
Hertsch
,
G.
Rudolph
, and
M.
Schmidt
, “
Gauge orbit types for theories with gauge group O(n), SO(n) or Sp(n)
,”
Ann. Henri Poincaré
12
(
2
),
351
395
(
2011
); arXiv:0812.0228.
24.
T.
Diez
and
G.
Rudolph
, “
Clebsch-Lagrange variational principle and geometric constraint analysis of relativistic field theories
,”
J. Math. Phys.
60
,
082903
(
2019
); arXiv:1812.04695 [math-ph].
25.
J.
Sniatycki
, “
A Hamiltonian analysis of Yang-Mills equations
,”
Rep. Math. Phys.
44
(
1-2
),
205
214
(
1999
) [Proceedings of the XXX Symposium on Mathematical Physics].
26.
J. M.
Arms
,
J. E.
Marsden
, and
V.
Moncrief
, “
Symmetry and bifurcations of momentum mappings
,”
Commun. Math. Phys.
78
(
4
),
455
478
(
1981
).
27.
J. M.
Arms
, “
The structure of the solution set for the Yang-Mills equations
,”
Math. Proc. Cambridge Philos. Soc.
90
(
2
),
361
372
(
1981
).
28.
K.-H.
Neeb
, “
Towards a Lie theory of locally convex groups
,”
Jpn. J. Math.
1
(
2
),
291
468
(
2006
).
29.
R. S.
Palais
, “
On the existence of slices for actions of non-compact lie groups
,”
Ann. Math.
73
(
2
),
295
323
(
1961
).
30.
T. N.
Subramaniam
, “
Slices for actions of infinite-dimensional groups
,” in
Differential Analysis in Infinite Dimensional Spaces
(
American Mathematical Society
,
1986
), Vol. 54, pp.
65
77
.
31.
M. C.
Abbati
,
R.
Cirelli
, and
A.
Manià
, “
The orbit space of the action of gauge transformation group on connections
,”
J. Geom. Phys.
6
(
4
),
537
557
(
1989
).
32.
D. G.
Ebin
, “
The manifold of Riemannian metrics
,” Proceedings of Symposia in Pure Mathematics Vol. 15 (
American Mathematical Society
,
1970
), pp.
11
40
.
33.
V.
Cervera
,
F.
Mascaró
, and
P. W.
Michor
, “
The action of the diffeomorphism group on the space of immersions
,”
Differ. Geom. Appl.
1
(
4
),
391
401
(
1991
).
34.
G.
Köthe
,
Topological Vector Spaces I
(
Springer
,
Berlin, Heidelberg
,
1983
), ISBN: 978-3-642-64990-5.
35.
J.-P.
Ortega
and
T. S.
Ratiu
,
Momentum Maps and Hamiltonian Reduction
(
Birkhäuser Boston
,
2003
), ISBN: 9780817643072, URL: http://amazon.com/o/ASIN/0817643079/.
36.
T.
Diez
, “
Normal form of equivariant maps and singular symplectic reduction in infinite dimensions with applications to gauge field theory
,” Ph.D. thesis,
Universität Leipzig
,
2019
; arXiv:1909.00744 [math.SG], URL: https://nbn-resolving.org/urn:nbn:de:bsz:15-qucosa2-352179.
37.
M.
Rodríguez-Olmos
, “
The isotropy lattice of a lifted action
,”
C. R. Math.
343
(
1
),
41
46
(
2006
); arXiv:math/0506014.
38.
M.
Crainic
and
J. N.
Mestre
, “
Orbispaces as differentiable stratified spaces
,”
Lett. Math. Phys.
108
(
3
),
805
859
(
2018
); arXiv:1705.00466.
39.
E.
Fischer
,
G.
Rudolph
, and
M.
Schmidt
, “
A lattice gauge model of singular Marsden–Weinstein reduction Part I. Kinematics
,”
J. Geom. Phys.
57
(
4
),
1193
1213
(
2007
); arXiv:hep-th/0606132.
40.
M.
Perlmutter
,
M.
Rodríguez-Olmos
, and
M. E.
Sousa-Dias
, “
The symplectic normal space of a cotangent-lifted action
,”
Differ. Geom. Appl.
26
,
277
297
(
2008
); arXiv:math/0501207.
41.
T.
Diez
and
T.
Ratiu
, “
Group-valued momentum maps for actions of automorphism groups
,” arXiv:2002.01273 [math.DG] (
2020
).
42.
R. H.
Cushman
and
L. M.
Bates
,
Global Aspects of Classical Integrable Systems
(
Birkhäuser; Springer
,
Basel
,
1997
), ISBN: 9783034898171.
43.
R.
Cirelli
and
A.
Manià
, “
The group of gauge transformations as a Schwartz–Lie group
,”
J. Math. Phys.
26
(
12
),
3036
3041
(
1985
).
44.
T.
Diez
, “
Slice theorem for Fréchet group actions and covariant symplectic field theory
,” M.A. thesis,
Universität Leipzig
,
2013
; arXiv:1405.2249.
45.
R. S.
Hamilton
, “
The inverse function theorem of Nash and Moser
,”
Bull. Am. Math. Soc.
7
,
65
223
(
1982
).
46.
T.
Diez
and
J.
Huebschmann
, “
Yang-Mills moduli spaces over an orientable closed surface via Fréchet reduction
,”
J. Geom. Phys.
132
,
393
414
(
2018
); arXiv:1704.01982.
47.
L.
Hörmander
,
The Analysis of Linear Partial Differential Operators III. Pseudo-Differential Operators
(
Springer
,
2007
), ISBN: 3-540-13828-5.
48.
H.
Alexander
, “
On the gauge orbit stratification for theories with classical compact gauge group
,” Ph.D. thesis,
Universität Leipzig
,
2008
.
49.
H. H.
Schaefer
,
Topological Vector Spaces
(
Springer
,
New York
,
1971
), ISBN: 978-0-387-05380-6.
50.
S.
Lang
,
Fundamentals of Differential Geometry
, Graduate Texts in Mathematics Vol. 191 (
Springer
,
New York
,
1999
), ISBN: 038798593X.
51.
J. E.
Marsden
,
T.
Ratiu
, and
R.
Abraham
,
Manifolds, Tensor Analysis, and Applications
, 3rd ed. Applied Mathematical Sciences (
Springer
,
New York
,
2002
), ISBN: 9780387967905.
52.
P.
Urbanski
, “
Differentiable structure in a conjugate vector bundle of infinite dimension
,”
Diss. Math.
113
,
34
(
1974
).
53.
B.
Maissen
, “
Über Topologien im Endomorphismenraum eines topologischen Vektorraumes
,”
Math. Ann.
151
(
4
),
283
285
(
1963
) (in German).
54.
H.
Glöckner
and
K.-H.
Neeb
, “
Infinite-dimensional lie groups
,” in
General Theory and Main Examples
(
Springer
) (unpublished), ISBN: 9780387094489.
55.
M. J.
Pflaum
, “
Ein Beitrag zur Geometrie und Analysis auf stratifizierten Räumen
,” habil. thesis,
Humboldt-Universität Berlin
,
2000
.
You do not currently have access to this content.