Consider a nonlinear wave equation for a massless scalar field with self-interaction in the spatially flat Friedmann–Lemaître–Robertson–Walker spacetimes. For the case of decelerating expansion, we show upper bounds of the lifespan of blow-up solutions by distinguishing subcritical and critical cases. Comparing to the case of the Minkowski spacetime, we discuss how the scale factor affects the lifespan of blow-up solutions of the equation.

1.
S.
Chen
,
G. W.
Gibbons
,
Y.
Li
, and
Y.
Yang
, “
Friedmann’s equations in all dimensions and Chebyshev’s theorem
,”
J. Cosmol. Astropart. Phys.
2014
,
035
.
2.
S.
Weinberg
,
Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity
(
John Wiley & Sons
,
1972
).
3.
Y.
Wakasugi
, “
Critical exponent for the semilinear wave equation with scale invariant damping
,”
Fourier Anal.: Trends Math.
2014
,
375
390
.
4.
Y.
Wakasugi
, “
On the diffusive structure for the damped wave equation with variable coefficients
,” Ph.D. thesis,
Osaka University
,
2014
.
5.
M.
Ikeda
,
M.
Sobajima
, and
Y.
Wakasugi
, “
Sharp lifespan estimates of blowup solutions to semi-linear wave equations with time-dependent effective damping
,”
J. Hyperbolic Differ. Equations
16
,
495
517
(
2019
).
6.
Z.
Tu
and
J.
Lin
, “
A note on the blowup of scale invariant damping wave equation with sub-Strauss exponent
,” arXiv:1709.00866v2 (
2017
).
7.
M.
Ikeda
and
M.
Sobajima
, “
Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data
,”
Math. Ann.
372
,
1017
1040
(
2018
).
8.
N.-A.
Lai
,
H.
Takamura
, and
K.
Wakasa
, “
Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent
,”
J. Differ. Equations
263
,
5377
5394
(
2017
).
9.
Z.
Tu
and
J.
Lin
, “
Life-span of semilinear wave equations with scale-invariant damping: Critical Strauss exponent case
,”
Differ. Integr. Equations
32
,
249
264
(
2019
).
10.
A.
Galstian
and
K.
Yagdjian
, “
Finite lifespan of solutions of the semilinear wave equation in the Einstein-de Sitter spacetime
,”
Rev. Math. Phys.
32
,
2050018
(
2020
).
11.
A.
Palmieri
and
M.
Reissig
, “
A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass
,”
J. Differ. Equations
266
,
1176
1220
(
2019
).
12.
H.
Takamura
, “
Improved Kato’s lemma on ordinary differential inequality and its application to semilinear wave equations
,”
Nonlinear Anal.
125
,
227
240
(
2015
).
13.
F.
John
, “
Blow-up of solutions of nonlinear wave equations in three space dimensions
,”
Manuscripta Math.
28
,
235
268
(
1979
).
14.
Y.
Zhou
and
W.
Han
, “
Life-span of solutions to critical semilinear wave equations
,”
Commun. Partial Differ. Equations
39
,
439
451
(
2014
).
15.
K.
Tsutaya
and
Y.
Wakasugi
, “
On heatlike lifespan of solutions of semilinear wave equations in Friedmann-Lemaître-Robertson-Walker spacetime
” (unpublished).
16.
Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
, edited by
M.
Abramowitz
and
I.
Stegun
(
Dover
,
New York
,
1972
).
17.
T.
Li
and
Y.
Zhou
,
Nonlinear Wave Equations
(
Springer
,
2017
).
18.
B. T.
Yordanov
and
Q. S.
Zhang
, “
Finite time blow up for critical wave equations in high dimensions
,”
J. Funct. Anal.
231
,
361
374
(
2006
).
19.
K.
Wakasa
and
B.
Yordanov
, “
Blow-up of solutions to critical semilinear wave equations with variable coefficients
,”
J. Differ. Equations
266
,
5360
5376
(
2019
).
20.
F.
John
,
Plane Waves and Spherical Means Applied to Partial Differential Equations
(
Interscience Publishers
,
1955
).
21.
F.
John
,
Nonlinear Wave Equations, Formation of Singularities
(
American Mathematical Society.
,
Providence
,
1990
).
22.
C. D.
Sogge
,
Lectures on Non-Linear Wave Equations
, 2nd ed. (
International Press of Boston, Inc.
,
2008
).
23.
P.
D’Ancona
, “
A note on a theorem of Jörgens
,”
Math. Z.
218
,
239
252
(
1995
).
You do not currently have access to this content.