A quantum surface (QS) is an equivalence class of pairs (D, H) of simply connected domains DC and random distributions H on D induced by the conformal equivalence for random metric spaces. This distribution-valued random field is extended to a QS with N + 1 marked boundary points (MBPs) with NZ0. We propose the conformal welding problem for it in the case of NZ1. If N = 1, it is reduced to the problem introduced by Sheffield, who solved it by coupling the QS with the Schramm–Loewner evolution (SLE). When N ≥ 3, there naturally appears room for making the configuration of MBPs random, and hence, a new problem arises how to determine the probability law of the configuration. We report that the multiple SLE in H driven by the Dyson model on R helps us to fix the problems and makes them solvable for any N ≥ 3. We also propose the flow line problem for an imaginary surface with boundary condition changing points (BCCPs). In the case when the number of BCCPs is two, this problem was solved by Miller and Sheffield. We address the general case with an arbitrary number of BCCPs in a similar manner to the conformal welding problem. We again find that the multiple SLE driven by the Dyson model plays a key role to solve the flow line problem.

1.
S.
Sheffield
, “
Gaussian free fields for mathematicians
,”
Probab. Theory Relat. Fields
139
,
521
541
(
2007
).
2.
A. A.
Belavin
,
A. M.
Polyakov
, and
A. B.
Zamolodchikov
, “
Infinite conformal symmetry in two-dimensional quantum field theory
,”
Nucl. Phys. B
241
,
333
380
(
1984
).
3.
N.-G.
Kang
and
N. G.
Makarov
,
Gaussian Free Field and Conformal Field Theory
(
Astérisque. American Mathematical Society
,
2013
).
4.
B.
Duplantier
and
S.
Sheffield
, “
Liouville quantum gravity and KPZ
,”
Invent. Math.
185
,
333
393
(
2011
).
5.
A. M.
Polyakov
, “
Quantum geometry of bosonic strings
,”
Phys. Lett. B
103
,
207
210
(
1981
).
6.
A. M.
Polyakov
, “
Quantum geometry of fermionic strings
,”
Phys. Lett. B
103
,
211
213
(
1981
).
7.
J.
Miller
and
S.
Sheffield
, “
Imaginary geometry I: Interacting SLEs
,”
Probab. Theory Relat. Fields
164
,
553
705
(
2016
).
8.
J.
Miller
and
S.
Sheffield
, “
Imaginary geometry II: Reversibility of SLEκ1, ρ2) for κ ∈ (0, 4)
,”
Ann. Prob.
44
,
1647
1722
(
2016
).
9.
J.
Miller
and
S.
Sheffield
, “
Imaginary geometry III: Reversibility of SLEκ for κ ∈ (4, 8)
,”
Ann. Math.
184
,
455
486
(
2016
).
10.
J.
Miller
and
S.
Sheffield
, “
Imaginary geometry IV: Interior rays, whole-plane reversibility, and space-filling trees
,”
Probab. Theory Relat. Fields
169
,
729
869
(
2017
).
11.
J.
Dubédat
, “
SLE and the free field: Partition functions and couplings
,”
J. Am. Math. Soc.
22
,
995
1054
(
2009
).
12.
S.
Sheffield
, “
Conformal weldings of random surfaces: SLE and the quantum gravity zipper
,”
Ann. Prob.
44
,
3474
3545
(
2016
).
13.
O.
Schramm
, “
Scaling limits of loop-erased random walks and uniform spanning trees
,”
Isr. J. Math.
118
,
221
288
(
2000
).
14.
P. P.
Kufarev
,
V. V.
Sobolev
, and
L. V.
Sporyševa
, “
A certain method of investigation of extremal problems for functions that are univalent in the half-plane
,”
Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat.
200
,
142
164
(
1968
).
15.
K.
Löwner
, “
Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I
,”
Math. Ann.
89
,
103
121
(
1923
).
16.
S.
Rohde
and
O.
Schramm
, “
Basic properties of SLE
,”
Ann. Math.
161
,
883
924
(
2005
).
17.
D.
Chelkak
,
H.
Duminil-Copin
,
C.
Hongler
,
A.
Kemppainen
, and
S.
Smirnov
, “
Convergence of Ising interfaces to Schramm’s SLE curves
,”
C. R. Math.
352
,
157
161
(
2014
).
18.
S.
Smirnov
, “
Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits
,”
C. R. Acad. Sci. Paris
333
,
239
244
(
2001
).
19.
G. F.
Lawler
, “
Conformal invariance and 2D statistical physics
,”
Bull. Am. Math. Soc.
46
,
35
54
(
2009
).
20.
W.
Werner
, “
Random planar curves and Schramm–Loewner evolutions
,” in
Lectures on Probability Theory and Statistics
, Lecture Notes in Mathematics Vol. 1840 (
Springer
,
Berlin
,
2004
), pp.
107
195
.
21.
M.
Bauer
,
D.
Bernard
, and
K.
Kytölä
, “
Multiple Schramm–Loewner evolutions and statistical mechanics martingales
,”
J. Stat. Phys.
120
,
1125
1163
(
2005
).
22.
T.
Hida
,
Brownian Motion
, Applications of Mathematics Vol. 11 (
Springer-Verlag New York Heidelberg Berlin
,
1980
).
23.
N.
Berestycki
, Introduction to the Gaussian free field and Liouville quantum gravity, 2016, available at https://homepage.univie.ac.at/nathanael.berestycki/articles.html.
24.
W.
Qian
and
W.
Werner
, “
Coupling the Gaussian free fields with free and with zero boundary conditions via common level lines
,”
Commun. Math. Phys.
361
,
53
80
(
2018
).
25.
O.
Roth
and
S.
Schleissinger
, “
The Schramm–Loewner equation for multiple slits
,”
J. Anal. Math.
131
,
73
99
(
2017
).
26.
N.
Ikeda
and
S.
Watanabe
,
Stochastic Differential Equations and Diffusion Processes
, 2nd ed. (
North-Holland/Kodansha
,
Tokyo
,
1989
).
27.
K.
Graham
, “
On multiple Schramm–Loewner evolutions
,”
J. Stat. Mech.
2007
,
P03008
.
28.
F.
David
,
A.
Kupiainen
,
R.
Rhodes
, and
V.
Vargas
, “
Liouville quantum gravity on the Riemann sphere
,”
Commun. Math. Phys.
342
,
869
907
(
2016
).
29.
Y.
Huang
,
R.
Rhodes
, and
V.
Vargas
, “
Liouville quantum gravity on the unit disk
,”
Ann. Inst. H. Poincaré Probab. Stat.
54
,
1694
1730
(
2018
).
30.
R.
Rhodes
and
V.
Vargas
, “
Gaussian multiplicative chaos and Liouville quantum gravity
,” in
Stochastic Processes and Random Matrices: Lecture Notes of the Les Houches Summer School: Volume 104, July 2015
(
Oxford University Press
,
Oxford
,
2017
).
31.
B.
Duplantier
,
J.
Miller
, and
S.
Sheffield
, “
Liouville quantum gravity as a mating of trees
,” arXiv:1409.7055 (
2014
).
32.
F. J.
Dyson
, “
A Brownian-motion model for the eigenvalues of a random matrix
,”
J. Math. Phys.
3
,
1191
1198
(
1962
).
33.
M.
Katori
,
Bessel Processes, Schramm–Loewner Evolution, and the Dyson Model
, SpringerBriefs in Mathematical Physics Vol. 11 (
Springer
,
2015
).
34.
E.
Cépa
and
D.
Lépingle
, “
Diffusing particles with electrostatic repulsion
,”
Probab. Theory Relat. Fields
107
,
429
449
(
1997
).
35.
P.
Graczyk
and
J.
Małecki
, “
Multidimensional Yamada–Watanabe theorem and its applications to particle systems
,”
J. Math. Phys.
54
,
021503
(
2013
).
36.
P.
Graczyk
and
J.
Małecki
, “
Strong solutions of non-colliding particle systems
,”
Electron. J. Probab.
19
,
1
21
(
2014
).
37.
L. C. G.
Rogers
and
Z.
Shi
, “
Interacting Brownian particles and the Wigner law
,”
Probab. Theory Relat. Fields
95
,
555
570
(
1993
).
38.
E.
Peltola
and
H.
Wu
, “
Global and local multiple SLE for κ ≤ 4 and connection probabilities for level line of GFF
,”
Commun. Math. Phys.
366
,
469
536
(
2019
).
39.
O.
Schramm
and
S.
Sheffield
, “
A contour line of the continuum Gaussian free field
,”
Probab. Theory Relat. Fields
157
,
47
80
(
2013
).
40.
G. W.
Anderson
,
A.
Guionnet
, and
O.
Zeitouni
,
An Introduction to Random Matrices
(
Cambridge University Press
,
Cambridge
,
2010
).
41.
P. J.
Forrester
,
Log-Gases and Random Matrices
, London Mathematical Society Monographs (
Princeton University Press
,
Princeton
,
2010
).
42.
J.
Cardy
, “
Stochastic Loewner evolution and Dyson’s circular ensembles
,”
J. Phys. A: Math. Gen.
36
,
L379
L386
(
2003
).
43.
J.
Cardy
, “
Corrigendum: Stochastic Loewner evolution and Dyson’s circular ensembles
,”
J. Phys. A: Math. Gen.
36
,
12343
(
2003
).
44.
J.
Cardy
, “
Calogero–Sutherland model and bulk-boundary correlations in conformal field theory
,”
Phys. Lett. B
582
,
121
126
(
2004
).
45.
M.
Bauer
and
D.
Bernard
, “
Conformal field theories of stochastic Loewner evolutions
,”
Commun. Math. Phys.
239
,
493
521
(
2003
).
46.
M.
Bauer
and
D.
Bernard
, “
Conformal transformations and the SLE partition function martingale
,”
Ann. Henri Poincaré
5
,
289
326
(
2004
).
47.
S.
Koshida
, “
Local martingales associated with Schramm–Loewner evolutions with internal symmetry
,”
J. Math. Phys.
59
,
101703
(
2018
).
48.
M.
Katori
and
H.
Tanemura
, “
Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems
,”
J. Math. Phys.
45
,
3058
3085
(
2004
).
49.
A.
del Monaco
,
I.
Hotta
, and
S.
Schleissinger
, “
Tightness results for infinite-slit limits of the chordal Loewner equation
,”
Comput. Methods Funct. Theory
18
,
9
33
(
2018
).
50.
S.
Schleissinger
, “
Embedding problems in Loewner theory
,” Ph.D. thesis,
Julius-Maximilians-Universität Wüuzburg
,
2013
; arXiv:1501.04507.
51.
T.
Takebe
, “
Dispersionless BKP hierarchy and quadrant Löwner equation
,”
SIGMA
10
,
023
(
2014
).
52.
M.-F.
Bru
, “
Wishart process
,”
J. Theor. Probab.
4
,
725
751
(
1991
).
53.
M.
Katori
and
S.
Koshida
, “
Gaussian free fields coupled with multiple SLEs driven by stochastic log-gases
,” arXiv:2001.03079 (
2020
).
54.
O.
Schramm
and
D. B.
Wilson
, “
SLE coordinate changes
,”
New York J. Math.
11
,
659
669
(
2005
).
55.
M.
Katori
and
H.
Tanemura
, “
Non-equilibrium dynamics of Dyson’s model with an infinite number of particles
,”
Commun. Math. Phys.
293
,
469
497
(
2010
).
56.
Y.
Kawamoto
and
H.
Osada
, “
Finite-particle approximations for interacting Brownian particles with logarithmic potential
,”
J. Math. Soc. Jpn.
70
,
921
952
(
2018
).
57.
H.
Osada
, “
Infinite-dimensional stochastic differential equations related to random matrices
,”
Probab. Theory Relat. Fields
153
,
471
509
(
2012
).
58.
H.
Osada
, “
Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials
,”
Ann. Probab.
41
,
1
49
(
2013
).
59.
H.
Osada
and
H.
Tanemura
, “
Strong Markov property of determinantal processes with extended kernels
,”
Stoch. Proc. Appl.
126
,
186
208
(
2016
).
60.
H.
Osada
and
H.
Tanemura
, “
Infinite-dimensional stochastic differential equations and tail σ-fields
,”
Probab. Theory Relat. Fields
177
,
1137
1242
(
2020
).
61.
L.-C.
Tsai
, “
Infinite dimensional stochastic differential equations for Dyson’s model
,”
Probab. Theory Relat. Fields
166
,
801
850
(
2016
).
62.
A.
del Monaco
and
S.
Schleissinger
, “
Multiple SLE and the complex Burgers equation
,”
Math. Nachr.
289
,
2007
2018
(
2016
).
63.
I.
Hotta
and
M.
Katori
, “
Hydrodynamic limit of multiple SLE
,”
J. Stat. Phys.
171
,
166
188
(
2018
).
64.
E.
Gwynne
,
J.
Miller
, and
S.
Sheffield
, “
Harmonic functions on mated-CRT maps
,”
Electron. J. Probab.
24
,
58
(
2019
).
65.
E.
Gwynne
,
J.
Miller
, and
S.
Sheffield
, “
The Tutte embedding of the Poisson–Voronoi tessellation of the Brownian disk converges to 8/3 -Liouville quantum gravity
,”
Commun. Math. Phys.
374
,
735
784
(
2020
).
66.
N.
Holden
and
X.
Sun
, “
Convergence of uniform triangulations under the Cardy embedding
,” arXiv:1905.13207 (
2019
).
67.
V.
Beffara
,
E.
Peltola
, and
H.
Wu
, “
On the uniqueness of global multiple SLE
,” arXiv:1801.07699 (
2018
).
68.
J.
Dubédat
, “
Commutation relations for Schramm–Loewner evolutions
,”
Commun. Pure Appl. Math.
60
,
1792
1847
(
2007
).
69.
G. F.
Lawler
, “
Multifractal analysis of the reverse flow for the Schramm–Loewner evolution
,”
Prog. Probab.
61
,
73
107
(
2009
).
70.
F. J.
Viklund
and
G. F.
Lawler
, “
Almost sure multifractal spectrum for the tip of an SLE curve
,”
Acta Math.
209
,
265
322
(
2012
).
71.
Y.
Fukusumi
, “
Time reversing procedure of SLE and 2d gravity
,” arXiv:1710.08670 (
2017
).
You do not currently have access to this content.