A quantum walk describes the discrete unitary evolution of a quantum particle on a discrete graph. Some quantum walks, referred to as the Weyl and Dirac walks, provide a description of the free evolution of relativistic quantum fields in the small wave-vector regime. The clash between the intrinsic discreteness of quantum walks and the continuous symmetries of special relativity is resolved by giving a definition of change of inertial frame in terms of a change of values of the constants of motion, which leaves the walk operator unchanged. Starting from the family of 1 + 1 dimensional Dirac walks with all possible values of the mass parameter, we introduce a unique walk encompassing the latter as an extra degree of freedom, and we derive its group of changes of inertial frames. This symmetry group contains a non-linear realization of SO+(2,1)R3; since one of the two space-like dimensions does not correspond to an actual spatial degree of freedom but rather the mass, we interpret it as a 2 + 1 dimensional de Sitter group. This group also contains a non-linear realization of the proper orthochronous Poincaré group SO+(1,1)R2 in 1 + 1 dimension, as the ones considered within the framework of doubly special relativity, which recovers the usual relativistic symmetry in the limit of small wave-vectors and masses. Surprisingly, for the Dirac walk with a fixed value of the mass parameter, the group of allowed changes of reference frame does not have a consistent interpretation in the limit of small wave-vectors.

1.
G.
Grossing
and
A.
Zeilinger
,
Complex Syst.
2
(
2
),
197
(
1988
).
2.
D. A.
Meyer
,
J. Stat. Phys.
85
(
5
),
551
(
1996
).
3.
A.
Nayak
and
A.
Vishwanath
, arXiv:quant-ph/0010117 (
2000
).
4.
A.
Ambainis
,
E.
Bach
,
A.
Nayak
,
A.
Vishwanath
, and
J.
Watrous
, in
Proceedings of 33rd annual ACM symposium on Theory of computing
(
ACM
,
2001
), pp.
37
49
.
5.
D.
Aharonov
,
A.
Ambainis
,
J.
Kempe
, and
U.
Vazirani
, in
Proceedings of 33rd annual ACM symposium on Theory of computing
(
ACM
,
2001
), pp.
50
59
.
6.
B.
Schumacher
and
R.
Werner
, arXiv:quant-ph/0405174 (
2004
).
7.
D.
Gross
,
V.
Nesme
,
H.
Vogts
, and
R.
Werner
,
Commun. Math. Phys.
310
,
419
454
(
2012
).
8.
P.
Arrighi
,
V.
Nesme
, and
R.
Werner
,
J. Comput. Syst. Sci.
77
(
2
),
372
(
2011
).
9.
M.
Freedman
,
M. B.
Hastings
,
Commun. Math. Phys.
376
,
1171
1222
(
2020
).
10.
T.
Farrelly
, arXiv:1904.13318 (
2019
).
11.
P.
Arrighi
,
Nat. Comput.
18
,
885
899
(
2019
).
12.
A. M.
Childs
,
Phys. Rev. Lett.
102
,
180501
(
2009
).
13.
A. M.
Childs
,
D.
Gosset
, and
Z.
Webb
,
Science
339
(
6121
),
791
(
2013
).
14.
N. B.
Lovett
,
S.
Cooper
,
M.
Everitt
,
M.
Trevers
, and
V.
Kendon
,
Phys. Rev. A
81
,
042330
(
2010
).
15.
R.
Raussendorf
,
Phys. Rev. A
72
,
022301
(
2005
).
16.
D.
Shepherd
,
T.
Franz
, and
R.
Werner
,
Phys. Rev. Lett.
97
(
2
),
020502
(
2006
).
17.
P.
Arrighi
and
J.
Grattage
,
J. Comput. Syst. Sci.
78
(
6
),
1883
(
2012
).
18.
A. M.
Childs
,
R.
Cleve
,
E.
Deotto
,
E.
Farhi
,
S.
Gutmann
, and
D. A.
Spielman
, in
Proceedings of 35th Annual ACM Symposium on Theory of Computing, STOC ’03
(
ACM
,
New York, NY, USA
,
2003
), pp.
59
68
.
19.
A.
Ambainis
,
SIAM J. Comput.
37
(
1
),
210
(
2007
).
20.
F.
Magniez
,
M.
Santha
, and
M.
Szegedy
,
SIAM J. Comput.
37
(
2
),
413
(
2007
).
21.
R. P.
Feynman
,
Int. J. Theor. Phys.
21
(
6
),
467
(
1982
).
22.
C. M.
Dawson
,
J.
Eisert
, and
T. J.
Osborne
,
Phys. Rev. Lett.
100
,
130501
(
2008
).
23.
J. I.
Cirac
,
D.
Perez-Garcia
,
N.
Schuch
, and
F.
Verstraete
,
J. Stat. Mech.: Theory Exp.
2017
(
8
),
083105
.
24.
M.
Genske
,
W.
Alt
,
A.
Steffen
,
A. H.
Werner
,
R. F.
Werner
,
D.
Meschede
, and
A.
Alberti
,
Phys. Rev. Lett.
110
,
190601
(
2013
).
25.
A.
Alberti
,
W.
Alt
,
R.
Werner
, and
D.
Meschede
,
New J. Phys.
16
(
12
),
123052
(
2014
).
26.
L.
Sansoni
,
F.
Sciarrino
,
G.
Vallone
,
P.
Mataloni
,
A.
Crespi
,
R.
Ramponi
, and
R.
Osellame
,
Phys. Rev. Lett.
108
(
1
),
010502
(
2012
).
27.
A.
Crespi
,
R.
Osellame
,
R.
Ramponi
,
V.
Giovannetti
,
R.
Fazio
,
L.
Sansoni
,
F.
De Nicola
,
F.
Sciarrino
, and
P.
Mataloni
,
Nat. Photonics
7
,
322
(
2013
).
28.
S.
Succi
and
R.
Benzi
,
Physica D
69
(
3
),
327
(
1993
).
29.
I.
Bialynicki-Birula
,
Phys. Rev. D
49
,
6920
(
1994
).
30.
D. A.
Meyer
,
J. Stat. Phys.
85
(
5
),
551
(
1996
).
31.
J.
Yepez
,
Int. J. Mod. Phys. C
12
(
09
),
1285
(
2001
).
32.
G. M.
D’Ariano
and
P.
Perinotti
,
Phys. Rev. A
90
,
062106
(
2014
).
33.
A.
Bisio
,
G. M.
D’Ariano
, and
A.
Tosini
,
Ann. Phys.
354
,
244
(
2015
).
34.
A.
Bisio
,
G. M.
D’Ariano
, and
P.
Perinotti
,
Ann. Phys.
368
,
177
(
2016
).
35.
P.
Arrighi
and
S.
Facchini
,
EPL (Europhys. Lett.)
104
(
6
),
60004
(
2013
).
36.
G.
Di Molfetta
,
M.
Brachet
, and
F.
Debbasch
,
Phys. Rev. A
88
,
042301
(
2013
).
37.
P.
Arnault
and
F.
Debbasch
,
Phys. Rev. A
93
,
052301
(
2016
).
38.
A.
Bisio
,
G. M.
D’Ariano
,
P.
Perinotti
, and
A.
Tosini
,
Phys. Rev. A
97
,
032132
(
2018
).
39.
A.
Bibeau-Delisle
,
A.
Bisio
,
G. M.
D’Ariano
,
P.
Perinotti
, and
A.
Tosini
,
EPL (Europhys. Lett.)
109
(
5
),
50003
(
2015
).
40.
A.
Bisio
,
G. M.
D’Ariano
, and
P.
Perinotti
,
Philos. Trans. R. Soc., A
374
(
2068
),
20150232
(
2016
).
41.
A.
Bisio
,
G. M.
D’Ariano
, and
P.
Perinotti
,
Phys. Rev. A
94
,
042120
(
2016
).
42.
G.
Amelino-Camelia
,
Phys. Lett. B
510
(
1
),
255
(
2001
).
43.
J.
Magueijo
and
L.
Smolin
,
Phys. Rev. D
67
(
4
),
044017
(
2003
).
44.
G.
Amelino-Camelia
,
L.
Freidel
,
J.
Kowalski-Glikman
, and
L.
Smolin
,
Phys. Rev. D
84
,
084010
(
2011
).
46.
C.
Hogan
,
Phys. Rev. D
85
,
064007
(
2012
).
47.
I.
Pikovski
,
M.
Vanner
,
M.
Aspelmeyer
,
M.
Kim
, and
C.
Brukner
,
Nat. Phys.
331
(
1
),
393
(
2012
).
48.
G.
Amelino-Camelia
,
J.
Ellis
,
N. E.
Mavromatos
,
D. V.
Nanopoulos
, and
S.
Sarkar
,
Nature
393
,
763
(
1998
).
49.
A. A.
Abdo
 et al,
Nature
462
,
331
(
2009
).
50.
V.
Vasileiou
,
J.
Granot
,
T.
Piran
, and
G.
Amelino-Camelia
,
Nat. Phys.
11
,
344
(
2015
).
51.
G.
Amelino-Camelia
,
G.
D’Amico
,
G.
Rosati
, and
N.
Loret
,
Nat. Astron.
1
,
0139
(
2017
).
52.
A.
Bisio
,
G. M.
D’Ariano
, and
P.
Perinotti
,
Found. Phys.
47
(
8
),
1065
(
2017
).
53.
D. M.
Greenberger
,
J. Math. Phys.
11
(
8
),
2329
(
1970
).
54.
A.
Ambainis
,
E.
Bach
,
A.
Nayak
,
A.
Vishwanath
, and
J.
Watrous
, in
Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, STOC ’01
(
ACM
,
New York, NY, USA
,
2001
), pp.
37
49
.
55.
R.
Portugal
,
Quantum Walks and Search Algorithms
(
Springer Science & Business Media
,
2013
).
56.

We could also have considered the case MGL(2,C). However, this choice would only have introduced a k-independent multiplicative constant. The symmetry group would have been SD=S×C, i.e., the symmetry group of the MSL(2,C) case trivially extended by the direct product with the multiplicative action of C.

57.

A preliminary analysis was done in Ref. 39.

58.
G.
Amelino-Camelia
,
L.
Freidel
,
J.
Kowalski-Glikman
, and
L.
Smolin
,
Int. J. Mod. Phys. D
20
(
14
),
2867
(
2011
).
59.
G.
Amelino-Camelia
,
Symmetry
2
(
1
),
230
(
2010
).
60.
J.
Kowalski-Glikman
and
S.
Nowak
,
Int. J. Mod. Phys. D
12
(
02
),
299
(
2003
).
61.
S.
Majid
and
H.
Ruegg
,
Phys. Lett. B
334
(
3
),
348
(
1994
).
62.
E. R.
Livine
and
D.
Oriti
,
J. High Energy Phys.
2004
(
06
),
050
.
63.
G.
Mauro D’Ariano
and
A.
Tosini
,
Stud. Hist. Philos. Sci., Part B
44
(
3
),
294
(
2013
).
64.
P.
Arrighi
,
S.
Facchini
, and
M.
Forets
,
New J. Phys.
16
(
9
),
093007
(
2014
).
65.
F.
Debbasch
,
Ann. Phys.
405
,
340
(
2019
).
66.
P.
Arnault
,
G.
Di Molfetta
,
M.
Brachet
, and
F.
Debbasch
,
Phys. Rev. A
94
,
012335
(
2016
).
67.
P.
Arrighi
,
C.
Bény
, and
T.
Farrelly
,
Quantum Inf. Process.
19
(
3
),
88
(
2020
).
You do not currently have access to this content.