We study a generalization of the Wigner function to arbitrary tuples of Hermitian operators. We show that for any collection of Hermitian operators A1, …, An and any quantum state, there is a unique joint distribution on Rn with the property that the marginals of all linear combinations of the Ak coincide with their quantum counterparts. In other words, we consider the inverse Radon transform of the exact quantum probability distributions of all linear combinations. We call it the Wigner distribution because for position and momentum, this property defines the standard Wigner function. We discuss the application to finite dimensional systems, establish many basic properties, and illustrate these by examples. The properties include the support, the location of singularities, positivity, the behavior under symmetry groups, and informational completeness.

1.
E.
Wigner
, “
On the quantum correction for thermodynamic equilibrium
,”
Phys. Rev.
40
,
749
759
(
1932
).
2.
R. F.
O’Connell
, “
The Wigner distribution function—50th birthday
,”
Found. Phys.
13
,
83
92
(
1983
).
3.
W. P.
Schleich
,
Quantum Optics in Phase Space
(
Wiley
,
2001
).
4.
M.
Hillery
,
R. F.
O’Connell
,
M. O.
Scully
, and
E. P.
Wigner
, “
Distribution functions in physics: Fundamentals
,”
Phys. Rep.
106
,
121
167
(
1984
).
5.
L.
Cohen
,
Time-Frequency Analysis
(
Prentice-Hall
,
1995
).
6.
R. L.
Hudson
, “
When is the Wigner quasi-probability density non-negative?
,”
Rep. Math. Phys.
6
,
249
(
1974
).
7.
A.
Grossmann
, “
Parity operator and quantization of δ-functions
,”
Commun. Math. Phys.
48
,
191
194
(
1976
).
8.
A.
Kenfack
and
K.
Życzkowski
, “
Negativity of the Wigner function as an indicator of non-classicality
,”
J. Opt. B: Quantum Semiclassical Opt.
6
,
396
(
2004
); arXiv:quant-ph/0406015.
9.
C.
Ferrie
, “
Quasi-probability representations of quantum theory with applications to quantum information science
,”
Rep. Prog. Phys.
74
,
116001
(
2011
); arXiv:1010.2701.
10.
R. F.
Werner
, “
Wigner quantisation of arrival time and oscillator phase
,”
J. Phys. A: Math. Gen.
21
,
4565
4575
(
1988
).
11.
T.
Fischer
,
C.
Gneiting
, and
K.
Hornberger
, “
Wigner function for the orientation state
,”
New J. Phys.
15
,
063004
(
2013
); arXiv:1210.4115.
12.
M.
de Gosson
,
The Wigner Transform
(
World Scientific
,
2017
).
13.
S. T.
Ali
,
N. M.
Atakishiyev
,
S. M.
Chumakov
, and
K. B.
Wolf
, “
The Wigner function for general Lie groups and the wavelet transform
,”
Ann. Henri Poincaré
1
,
685
714
(
2000
).
14.
A. B.
Klimov
,
J. L.
Romero
, and
H.
de Guise
, “
Generalized SU(2) covariant Wigner functions and some of their applications
,”
J. Phys. A: Math Theor.
50
,
323001
(
2017
).
15.
W. K.
Wootters
, “
A Wigner-function formulation of finite-state quantum mechanics
,”
Ann. Phys.
176
,
1
(
1987
).
16.
D.
Gross
, “
Hudson’s theorem for finite-dimensional quantum systems
,”
J. Math. Phys.
47
,
122107
(
2006
); arXiv:quant-ph/0602001.
17.
H. A.
Kastrup
, “
Wigner functions for the pair angle and orbital angular momentum
,”
Phys. Rev. A
94
,
062113
(
2016
); arXiv:1601.02520.
18.
H. A.
Kastrup
, “
Wigner functions for angle and orbital angular momentum: Operators and dynamics
,”
Phys. Rev. A
95
,
052111
(
2017
); arXiv:1702.05615.
19.
L.
Cohen
and
M. O.
Scully
, “
Joint Wigner distribution for spin-l/2 particles
,”
Found. Phys.
16
,
295
310
(
1986
).
20.
M. O.
Scully
and
L.
Cohen
, “
Quasi-probability distributions for arbitrary operators
,” in
The Physics of Phase Space
, edited by
Y. S.
Kim
and
W. W.
Zachary
(
Springer
,
1987
), pp.
253
260
.
21.
J.
Radon
, “
Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten
,”
Ber. Verh. Kön.-Säch. Ak. Wis. Math.-Phys.
69
,
262
277
(
1917
).
22.
23.
L.
Cohen
,
The Weyl Operator and its Generalization
(
Springer
,
Basel
,
2003
).
24.
L.
Hörmander
,
The Analysis of Linear Partial Differential Operators
(
Springer
,
1983
), Vol. I.
25.
T.
Bröcker
and
R. F.
Werner
, “
Mixed states with positive Wigner functions
,”
J. Math. Phys.
36
,
62
75
(
1995
).
26.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics: Fourier Analysis, Self-Adjointness
(
Academic Press
,
1975
), Vol.2.
27.
J.
Harris
,
Algebraic Geometry
(
Springer
,
New York
,
2013
).
28.
R.
Kippenhahn
, “
Über den Wertevorrat einer Matrix
,”
Math. Nachrichten
6
,
193
228
(
1951
).
29.
M.-T.
Chien
and
H.
Nakazato
, “
Joint numerical range and its generating hypersurface
,”
Linear Algebra Appl.
432
,
173
179
(
2010
).
30.
S.
Weis
, “
On a theorem by Kippenhahn
,” arXiv:1705.00935 (
2017
).
31.
M.
Joswig
and
B.
Straub
, “
On the numerical range map
,”
J. Aust. Math. Soc.
65
,
267
283
(
1998
).
32.
R.
Werner
, “
Quantum harmonic analysis on phase space
,”
J. Math. Phys.
25
,
1404
1411
(
1984
).
33.
T. J.
Laffey
, “
A counterexample to Kippenhahn’s conjecture on hermitian pencils
,”
Linear Algebra Appl.
51
,
179
182
(
1983
).
34.
D.
Henrion
, “
Semidefinite geometry of the numerical range
,”
Electron. J. Linear Algebra
20
,
1
(
2010
); arXiv:1003.4837.
35.
J.
von Neumann
and
E. P.
Wigner
, “
Über das Verhalten von Eigenwerten bei adiabatischen Prozessen
,”
Phys. Z.
30
,
467
470
(
1929
).
36.
K.
Szymański
,
S.
Weis
, and
K.
Życzkowski
, “
Classification of joint numerical ranges of three hermitian matrices of size three
,”
Linear Algebra Appl.
545
,
148
173
(
2018
); arXiv:1603.06569.
37.
T.
Kato
,
Perturbation Theory of Linear Operators
(
Springer
,
1966/1984
).
38.
H.
Baumgärtel
,
Analytic Perturbation for Matrices and Operators
(
Birkhäuser
,
1985
).
39.
40.
A. O.
Barut
, “
Distribution functions for noncommuting operators
,”
Phys. Rev.
108
,
565
569
(
1957
).
41.
E. H.
Lieb
and
R.
Seiringer
, “
Equivalent forms of the Bessis-Moussa-Villani conjecture
,”
J. Stat. Phys.
115
,
185
190
(
2004
); arXiv:math-ph/0210027.
42.
D.
Bessis
,
P.
Moussa
, and
M.
Villani
, “
Monotonic converging variational approximations to the functional integrals in quantum statistical mechanics
,”
J. Math. Phys.
16
,
2318
2325
(
1975
).
43.
H. R.
Stahl
, “
Proof of the BMV conjecture
,”
Acta Math.
211
,
255
290
(
2013
); arXiv:1107.4875.
44.
A. È.
Eremenko
, “
H. Stahl’s proof of the BMV conjecture
,”
Mat. Sbornik
206
,
87
92
(
2015
); arXiv:1312.6003.
45.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Tables of Integrals, Series, and Products
(
Academic Press
,
1980
).
46.
L.
Dammeier
,
R.
Schwonnek
, and
R. F.
Werner
, “
Uncertainty relations for angular momentum
,” New J. Phys.
New J. Phys.
17
,
093046
(
2015
); arXiv:1505.00049.
47.
R.
Schwonnek
,
D.
Reeb
, and
R. F.
Werner
, “
Measurement uncertainty for finite quantum observables
,” Mathematics
Mathematics
4
,
38
(
2016
); arXiv:1604.00382.
You do not currently have access to this content.