We prove non-perturbative bounds on the time evolution of the probability distribution of operator size in the q-local Sachdev–Ye–Kitaev model with N fermions for any even integer q > 2 and any positive even integer N > 2q. If the couplings in the Hamiltonian are independent and identically distributed Rademacher random variables, the infinite temperature many-body Lyapunov exponent is almost surely finite as N. In the limit q, N, and q6+δ/N → 0, the shape of the size distribution of a growing fermion, obtained by leading order perturbation calculations in 1/N and 1/q, is similar to a distribution that locally saturates our constraints. Our proof is not based on Feynman diagram resummation; instead, we note that the operator size distribution obeys a continuous time quantum walk with bounded transition rates to which we apply concentration bounds from classical probability theory.

1.
S.
Sachdev
and
J.
Ye
, “
Gapless spin-fluid ground state in a random quantum Heisenberg magnet
,”
Phys. Rev. Lett.
70
,
3339
(
1993
); arXiv:cond-mat/9212030.
2.
S.
Sachdev
, “
Bekenstein-Hawking entropy and strange metals
,”
Phys. Rev. X
5
,
041025
(
2015
); arXiv:1506.05111.
3.
J.
Maldacena
and
D.
Stanford
, “
Comments on the Sachdev-Ye-Kitaev model
,”
Phys. Rev. D
94
,
106002
(
2016
); arXiv:1604.07818.
4.
A.
Kitaev
and
S. J.
Suh
, “
The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual
,”
J. High Energy Phys.
2018
(
5
),
183
; arXiv:1711.08467.
5.
J.
Maldacena
, “
The large N limit of superconformal field theories and supergravity
,”
Adv. Thoer. Math. Phys.
2
,
231
(
1998
); arXiv:hep-th/9711200.
6.
A.
Almheiri
and
J.
Polchinski
, “
Models of AdS2 backreaction and holography
,”
J. High Energy Phys.
2015
(
11
),
014
; arXiv:1402.6334.
7.
K.
Jensen
, “
Chaos in AdS2 holography
,”
Phys. Rev. Lett.
117
,
111601
(
2016
); arXiv:1605.06098.
8.
J.
Maldacena
,
D.
Stanford
, and
Z.
Yang
, “
Conformal symmetry and its breaking in two dimensional nearly anti-de Sitter space
,”
Prog. Theor. Exp. Phys.
2016
,
12C104
; arXiv:1606.01857.
9.
S. H.
Shenker
and
D.
Stanford
, “
Black holes and the butterfly effect
,”
J. High Energy Phys.
2014
(
3
),
067
; arXiv:1306.0622.
10.
J.
Maldacena
,
S. H.
Shenker
, and
D.
Stanford
, “
A bound on chaos
,”
J. High Energy Phys.
2016
(
8
),
106
; arXiv:1503.01409.
11.
A.
Nahum
,
S.
Vijay
, and
J.
Haah
, “
Operator spreading in random unitary circuits
,”
Phys. Rev. X
8
,
021014
(
2018
); arXiv:1705.08975.
12.
C. W.
von Keyserlingk
,
T.
Rakovsky
,
F.
Pollmann
, and
S. L.
Sondhi
, “
Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws
,”
Phys. Rev. X
8
,
021013
(
2018
); arXiv:1705.08910.
13.
A.
Lucas
, “
Operator size at finite temperature and Planckian bounds on quantum dynamics
,”
Phys. Rev. Lett.
122
,
216601
(
2019
); arXiv:1809.07769.
14.
D. A.
Roberts
,
D.
Stanford
, and
A.
Streicher
. “
Operator growth in the SYK model
,”
J. High Energy Phys.
2018
(
6
),
122
; arXiv:1802.02633.
15.
X.-L.
Qi
and
A.
Streicher
, “
Quantum epidemiology: Operator growth, thermal effects, and SYK
,”
J. High Energy Phys.
2019
(
8
),
12
; arXiv:1810.11958.
16.
L.
Susskind
, “
Why do things fall?
,” arXiv:1802.01198.
17.
A. R.
Brown
,
H.
Gharibyan
,
A.
Streicher
,
L.
Susskind
,
L.
Thorlacius
, and
Y.
Zhao
. “
Falling toward charged black holes
,”
Phys. Rev. D
98
,
126016
(
2018
); arXiv:1804.04156.
18.
Y.
Sekino
and
L.
Susskind
, “
Fast scramblers
,”
J. High Energy Phys.
2008
(
10
),
065
; arXiv:0808.2096.
19.
G.
Bentsen
,
Y.
Gu
, and
A.
Lucas
, “
Fast scrambling on sparse graphs
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
6689
(
2019
); arXiv:1805.08215.
20.
A.
Lucas
, “
Quantum many-body dynamics on the star graph
,” arXiv:1903.01468.
21.
P.
Saad
,
S. H.
Shenker
, and
D.
Stanford
, “
JT gravity as a matrix integral
,” arXiv:1903.11115.
22.
C.-F.
Chen
and
A.
Lucas
, “
Operator growth bounds from graph theory
,” arXiv:1905.03682.
23.
E. H.
Lieb
and
D. W.
Robinson
, “
The finite group velocity of quantum spin systems
,”
Commun. Math. Phys.
28
,
251
(
1972
).
24.
M. B.
Hastings
and
T.
Koma
, “
Spectral gap and exponential decay of correlations
,”
Commun. Math. Phys.
265
,
781
(
2006
); arXiv:math-ph/0507008.
25.
M. M. R.
Koochakie
,
S.
Alipour
, and
A.-T.
Rezakhani
. “
Lieb-Robinson bound and adiabatic evolution
,” arXiv:1307.3726.
26.
C.-F.
Chen
and
A.
Lucas
, “
Finite speed of quantum scrambling with long range interactions
,”
Phys. Rev. Lett.
123
,
250605
(
2019
), arXiv:1907.07637.
27.
M. C.
Tran
,
C.-F.
Chen
,
A.
Ehrenberg
,
A. Y.
Guo
,
A.
Deshpande
,
Y.
Hong
,
Z.-X.
Gong
,
A. V.
Gorshkov
, and
A.
Lucas
, “
Hierarchy of linear light cones with long-range interactions
,”
Phys. Rev. X
10
,
031009
(
2020
); arXiv:2001.11509.
28.

In the physics literature, the random variables JX are typically taken to be Gaussian. We expect that a very similar result to ours will hold in this case as well, but we found the combinatorial problem discussed in Sec. IV A to be a bit more elegant for Rademacher random variables.

29.

The authors of Ref. 14 called this the operator wave function.

30.
Z.
Füredi
and
J.
Komlós
, “
The eigenvalues of random symmetric matrices
,”
Combinatorica
1
,
233
(
1981
).
31.
C. D.
Meyer
,
Matrix Analysis and Applied Linear Algebra
(
SIAM
,
2000
).
32.
J. S.
Cotler
,
G.
Gur-Ari
,
M.
Hanada
,
J.
Polchinski
,
P.
Saad
,
S. H.
Shenker
,
D.
Stanford
,
A.
Streicher
, and
M.
Tezuka
, “
Black holes and random matrices
,”
J. High Energy Phys.
2017
(
05
),
118
; arXiv:1611.04650.
33.

However, such a seemingly optimal quantum walk likely does not maximize the probability of large size operators and perhaps does not even optimize the time-dependent average size.

34.
M.
Gärttner
,
J. G.
Bohnet
,
A.
Safavi-Naini
,
M. L.
Wall
,
J. J.
Bollinger
, and
A. M.
Rey
, “
Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet
,”
Nat. Phys.
13
,
781
(
2017
); arXiv:1608.08938.
35.
J.
Li
,
R.
Fan
,
H.
Wan
,
B.
Ye
,
B.
Zeng
,
H.
Zhai
,
X.
Peng
, and
J.
Du
, “
Measuring out-of-time-ordered correlators on a nuclear magnetic resonance quantum simulator
,”
Phys. Rev. X
7
,
031011
(
2017
); arXiv:1609.01246.
36.
L.
Erdos
and
H.-T.
Yau
, “
Linear Boltzmann equation as the weak coupling limit of a random Schrödinger equation
,”
Commun. Pure Appl. Math.
53
,
667
(
2000
); arXiv:math-ph/9901020.
37.
R.
Zwanzig
, “
Ensemble method in the theory of irreversibility
,”
J. Chem. Phys.
33
,
1338
(
1960
).
38.
H.
Mori
, “
A continued-fraction representation of the time-correlation functions,”
Prog. Theor. Phys.
34
,
399
(
1965
).
39.
D.
Forster
,
Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions
(
Perseus Books
,
1975
).
You do not currently have access to this content.