The Heun–Racah and Heun–Bannai–Ito algebras are introduced. Specializations of these algebras are seen to be realized by the operators obtained by applying the algebraic Heun construct to the bispectral operators of the Racah and Bannai–Ito polynomials. The study supplements the results on the Heun–Askey–Wilson algebra and completes the description of the Heun algebras associated with the polynomial families at the top of the Askey scheme, its q-analog, and the Bannai–Ito one.

1.
F. A.
Grünbaum
,
L.
Vinet
, and
A.
Zhedanov
, “
Algebraic Heun operator and band-time limiting
,”
Commun. Math. Phys.
364
(
3
),
1041
1068
(
2018
).
2.
F. A.
Grünbaum
.
The Bispectral Problem: An Overview
(
Springer Netherlands
,
Dordrecht
,
2001
), pp.
129
140
.
3.
N.
Crampé
,
L.
Vinet
, and
A.
Zhedanov
, “
Heun algebras of Lie type
,”
Proc. Am. Math. Soc.
148
,
1079
1094
(
2020
).
4.
D.
Slepian
, “
Some comments on Fourier analysis, uncertainty and modeling
,”
SIAM Rev.
25
(
3
),
379
393
(
1983
).
5.
H. J.
Landau
, “
An overview of time and frequency limiting
,” in
Fourier Techniques and Applications
, edited by
J. F.
Price
(
Plenum
,
New York
,
1985
), pp.
201
220
.
6.
N.
Crampé
,
R. I.
Nepomechie
, and
L.
Vinet
, “
Free-fermion entanglement and orthogonal polynomials
,”
J. Stat. Mech.: Theory Exp.
2019
(
9
),
093101
.
7.
N.
Crampé
,
R. I.
Nepomechie
, and
L.
Vinet
, “
Entanglement in fermionic chains and bispectrality
,” in (
World Scientific
,
2020
), Chap. 13, pp.
77
96
.
8.
R.
Koekoek
,
P. A.
Lesky
, and
R. F.
Swarttouw
,
Hypergeometric Orthogonal Polynomials and Their q-Analogues
, Springer Monographs in Mathematics (
Springer
,
2010
).
9.
F. A.
Grünbaum
,
L.
Vinet
, and
A.
Zhedanov
, “
Tridiagonalization and the Heun equation
,”
J. Math. Phys.
58
(
3
),
1
17
(
2017
).
10.
L.
Vinet
and
A.
Zhedanov
, “
The Heun operator of Hahn-type
,”
Proc. Am. Math. Soc.
147
,
2987
(
2019
).
11.
P.
Baseilhac
,
L.
Vinet
, and
A.
Zhedanov
, “
The q-Heun operator of big q-Jacobi type and the q-Heun algebra
,”
Ramanujan J.
52
,
367
380
(
2020
).
12.
K.
Takemura
, “
On q-deformations of the Heun equation
,”
Symmetry, Integrability Geom.: Methods Appl.
14
,
061
(
2018
).
13.
P.
Baseilhac
,
S.
Tsujimoto
,
L.
Vinet
, and
A.
Zhedanov
, “
The Heun-Askey-Wilson algebra and the Heun operator of Askey-Wilson type
,”
Ann. Henri Poincaré
20
,
3091
3112
(
2019
).
14.
P.
Baseilhac
and
R. A.
Pimenta
, “
Diagonalization of the Heun-Askey-Wilson operator, Leonard pairs and the algebraic Bethe ansatz
,”
Nucl. Phys. B
949
,
114824
(
2019
).
15.
S.
Belliard
and
N.
Crampé
, “
Heisenberg XXX model with general boundaries: Eigenvectors from algebraic Bethe ansatz
,”
Symmetry, Integrability Geom.: Methods Appl.
9
,
072
(
2013
).
16.
S.
Belliard
and
R. A.
Pimenta
, “
Modified algebraic Bethe ansatz for XXZ chain on the segment – II – general cases
,”
Nucl. Phys. B
894
,
527
552
(
2015
).
17.
K.
Nomura
and
P.
Terwilliger
, “
Linear transformations that are tridiagonal with respect to both eigenbases of a Leonard pair
,”
Linear Algebra Appl.
420
(
1
),
198
207
(
2007
).
18.
M. E. H.
Ismail
and
E.
Koelink
, “
Spectral properties of operators using tridiagonalization
,”
Analysis Appl.
10
(
03
),
327
343
(
2012
).
19.
V. X.
Genest
,
M. E. H.
Ismail
,
L.
Vinet
, and
A.
Zhedanov
, “
Tridiagonalization of the hypergeometric operator and the Racah–Wilson algebra
,”
Proc. Am. Math. Soc.
144
(
10
),
4441
4454
(
2016
).
20.
V. X.
Genest
,
L.
Vinet
, and
A.
Zhedanov
, “
The Racah algebra and superintegrable models
,”
J. Phys.: Conf. Ser.
512
(
1
),
012011
(
2014
).
21.
V. X.
Genest
,
L.
Vinet
, and
A.
Zhedanov
, “
Superintegrability in two dimensions and the Racah-Wilson algebra
,”
Lett. Math. Phys.
104
(
8
),
931
952
(
2014
).
22.
V. X.
Genest
,
L.
Vinet
, and
A.
Zhedanov
, “
Embeddings of the Racah algebra into the Bannai-Ito algebra
,”
Symmetry, Integrability Geom.: Methods Appl.
11
,
050
(
2015
).
23.
H.
De Bie
,
V. X.
Genest
,
S.
Tsujimoto
,
L.
Vinet
, and
A.
Zhedanov
, “
The Bannai-Ito algebra and some applications
,”
J. Phys.: Conf. Ser.
597
(
1
),
012001
(
2015
).
24.
S.
Tsujimoto
,
L.
Vinet
, and
A.
Zhedanov
, “
Dunkl shift operators and Bannai–Ito polynomials
,”
Adv. Math.
229
(
4
),
2123
2158
(
2012
).
25.
E.
Bannai
and
T.
Ito
,
Algebraic Combinatorics
(
Benjamin-Cummings
,
1984
).
26.
L.
Vinet
and
A.
Zhedanov
, “
A “missing” family of classical orthogonal polynomials
,”
J. Phys. A: Math. Theor.
44
(
8
),
085201
(
2010
).
27.
V. X.
Genest
,
L.
Vinet
, and
A.
Zhedanov
, “
Bispectrality of the complementary Bannai-Ito polynomials
,”
Symmetry, Integrability Geom.: Methods Appl.
9
,
018
(
2013
).
You do not currently have access to this content.