The Navier–Stokes–Voigt equations are a regularization of the Navier–Stokes equations. Sharing some asymptotic and statistical properties, they have been used in direct numerical simulations of the latter. In this article, we characterize the decay rate of the solutions to the Navier–Stokes–Voigt equations with damping. Applying the Fourier splitting method, we prove the H1 decay of weak solutions for α > 0, β > 2, and μ > ν2.

1.
V. K.
Kalantarov
and
E. S.
Titi
, “
Global attractors and determining modes for the 3D Navier-Stokes-Voight equations
,”
Chin. Ann. Math., Ser. B
30
(
6
),
697
714
(
2009
).
2.
D.
Bresch
and
B.
Desjardins
, “
Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model
,”
Commun. Math. Phys.
238
(
1-2
),
211
223
(
2003
).
3.
L.
Hsiao
,
Quasilinear Hyperbolic Systems and Dissipative Mechanisms
(
World Scientific
,
1998
).
4.
A. P.
Oskolkov
, “
The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers
,”
Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)
38
,
98
136
(
1973
), boundary value problems of mathematical physics and related questions in the theory of functions, 7.
5.
Y.-P.
Cao
,
E. M.
Lunasin
, and
E. S.
Titi
, “
Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models
,”
Commun. Math. Sci.
4
(
4
),
823
848
(
2006
).
6.
X.-J.
Cai
and
Q.-S.
Jiu
, “
Weak and strong solutions for the incompressible Navier-Stokes equations with damping
,”
J. Math. Anal. Appl.
343
(
2
),
799
809
(
2008
).
7.
Z.-J.
Zhang
,
X.-L.
Wu
, and
M.
Lu
, “
On the uniqueness of strong solution to the incompressible Navier-Stokes equations with damping
,”
J. Math. Anal. Appl.
377
(
1
),
414
419
(
2011
).
8.
Y.
Jia
,
X.-W.
Zhang
, and
B.-Q.
Dong
, “
The asymptotic behavior of solutions to three-dimensional Navier-Stokes equations with nonlinear damping
,”
Nonlinear Anal. Real World Appl.
12
(
3
),
1736
1747
(
2011
).
9.
X.-J.
Cai
and
L.-H.
Lei
, “
L2 decay of the incompressible Navier-Stokes equations with damping
,”
Acta Math. Sci.
30
(
4
),
1235
1248
(
2010
).
10.
H.
Liu
and
H.-J.
Gao
, “
Decay of solutions for the 3D Navier-Stokes equations with damping
,”
Appl. Math. Lett.
68
,
48
54
(
2017
).
11.
Z.-H.
Jiang
, “
Asymptotic behavior of strong solutions to the 3D Navier-Stokes equations with a nonlinear damping term
,”
Nonlinear Anal.
75
(
13
),
5002
5009
(
2012
).
12.
V.
Kalantarov
and
S.
Zelik
, “
Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities
,”
Commun. Pure Appl. Anal.
11
(
5
),
2037
2054
(
2012
).
13.
P. A.
Markowich
,
E. S.
Titi
, and
S.
Trabelsi
, “
Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model
,”
Nonlinearity
29
(
4
),
1292
1328
(
2016
).
14.
C. T.
Anh
and
P. T.
Trang
, “
On the regularity and convergence of solutions to the 3D Navier-Stokes-Voigt equations
,”
Comput. Math. Appl.
73
(
4
),
601
615
(
2017
).
15.
C. T.
Anh
and
P. T.
Trang
, “
Decay rate of solutions to 3D Navier-Stokes-Voigt equations in Hm spaces
,”
Appl. Math. Lett.
61
,
1
7
(
2016
).
16.
C. J.
Niche
, “
Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum
,”
J. Differ. Equations
260
(
5
),
4440
4453
(
2016
).
17.
C.-D.
Zhao
and
H.-J.
Zhu
, “
Upper bound of decay rate for solutions to the Navier-Stokes-Voigt equations in R3
,”
Appl. Math. Comput.
256
,
183
191
(
2015
).
18.
R.
Teman
,
Navier-Stokes Equations
(
North-Holland
,
1984
).
19.
A.
Friedman
,
Partial Differential Equations
(
Holt, Rinehart and Winston, Inc.
,
New York, Montreal, Que, London
,
1969
).
20.
S.
Zelik
, “
The attractor for a nonlinear reaction-diffusion system with a supercritical nonlinearity and its dimension
,”
Rend. Accad. Naz. Sci. XL Mem. Mat. Appl.
24
(
5
),
1
25
(
2000
).
You do not currently have access to this content.