We revisit the scattering problems for the 2D mass super-critical Schrödinger and Klein–Gordon equations with radial data below the ground state in the energy space. We give an alternative proof of energy scattering for both the defocusing and focusing cases using the ideas in the work of Dodson and Murphy [Proc. Am. Math. Soc. 145, 4859 (2017)]. Our results also include the exponential type nonlinearities, which seem to be new for the focusing exponential non-linear Schrödinger equation.
REFERENCES
1.
K.
Nakanishi
, “Energy scattering for nonlinear Klein–Gordon and Schrödinger equations in spatial dimensions 1 and 2
,” J. Funct. Anal.
169
(1
), 201
–225
(1999
).2.
S.
Ibrahim
, N.
Masmoudi
, and K.
Nakanishi
, “Scattering threshold for the focusing nonlinear Klein–Gordon equation
,” Anal. PDE
4
(3
), 405
–460
(2011
).3.
T.
Inui
, “Scattering and blow-up for the focusing nonlinear Klein–Gordon equation with complex-valued data
,” Ann. Henri Poincaré
18
(1
), 307
–343
(2017
).4.
T.
Akahori
and H.
Nawa
, “Blowup and scattering problems for the nonlinear Schrödinger equations
,” Kyoto J. Math.
53
(3
), 629
–672
(2010
).5.
D.
Fang
, J.
Xie
, and T.
Cazenave
, “Scattering for the focusing energy-subcritical nonlinear Schrödinger equation
,” Sci. Chin. Math.
54
(10
), 20
–37
(2011
).6.
C. D.
Guevara
, “Global behavior of finite energy solutions to the d-dimensional focusing nonlinear Schrödinger equation
,” Appl. Math. Res. Express
2014
(2
), 177
–243
(2013
).7.
B.
Dodson
, “Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state
,” Adv. Math.
285
, 1589
–1618
(2015
).8.
B.
Dodson
, “Global well-posedness and scattering for the defocusing L2-critical nonlinear Schrödinger equation when d = 2
,” Duke Math. J.
165
(18
), 3435
–3516
(2016
).9.
R.
Killip
, T.
Tao
, and M.
Visan
, “The cubic nonlinear Schrödinger equation in two dimensions with radial data
,” J. Eur. Math. Soc.
11
(6
), 1203
–1258
(2009
).10.
M.
Nakamura
and T.
Ozawa
, “Nonlinear Schrödinger equations in the Sobolev space of critical order
,” J. Funct. Anal.
155
, 364
–380
(1998
).11.
M.
Nakamura
and T.
Ozawa
, “Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth
,” Math. Z.
231
, 479
–487
(1999
).12.
M.
Nakamura
and T.
Ozawa
, “The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order
,” Discrete Contin. Dyn. Syst.
5
(1
), 215
–231
(1999
).13.
B.
Wang
, C.
Hao
, and H.
Hudzik
, “Energy scattering theory for the nonlinear Schrödinger equations with exponential growth in lower spatial dimensions
,” J. Differ. Equations
228
(1
), 311
–338
(2006
).14.
J.
Colliander
, S.
Ibrahim
, M.
Majdoub
, and N.
Masmoudi
, “Energy critical NLS in two space dimension
,” J. Hyperbolic Differ. Equations
06
, 549
–575
(2009
).15.
S.
Ibrahim
, M.
Majdoub
, and N.
Masmoudi
, “Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity
,” Commun. Pure Appl. Math.
59
(11
), 1639
–1658
(2006
).16.
S.
Ibrahim
, M.
Majdoub
, and N.
Masmoudi
, “Ill-posedness of H1-supercritical waves
,” C. R. Math.
345
(3
), 133
–138
(2007
).17.
S.
Ibrahim
, M.
Majdoub
, N.
Masmoudi
, and K.
Nakanishi
, “Scattering for the two-dimensional energy-critical wave equation
,” Duke Math. J.
150
(2
), 287
–329
(2009
).18.
S.
Ibrahim
, M.
Majdoub
, and N.
Masmoudi
, “Double logarithmic inequality with a sharp constant
,” Proc. Am. Math. Soc.
135
(1
), 87
–97
(2007
).19.
S.
Ibrahim
, M.
Majdoub
, N.
Masmoudi
, and K.
Nakanishi
, “Scattering for the two-dimensional NLS with exponential nonlinearity
,” Nonlinearity
25
(6
), 1843
–1849
(2012
).20.
H.
Bahouri
, S.
Ibrahim
, and G.
Perelman
, “Scattering for the critical 2-d NLS with exponential growth
,” Differ. Integr. Equations
27
(3/4
), 233
–268
(2014
).21.
M.
Sack
and M.
Struwe
, “Scattering for a critical nonlinear wave equation in two space dimensions
,” Math. Ann.
365
(3-4
), 969
–985
(2016
).22.
C. E.
Kenig
and F.
Merle
, “Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case
,” Invent. Math.
166
(3
), 645
–675
(2006
).23.
B.
Dodson
and J.
Murphy
, “A new proof of scattering below the ground state for the 3d radial focusing cubic NLS
,” Proc. Am. Math. Soc.
145
(11
), 4859
–4867
(2017
).24.
B.
Dodson
and J.
Murphy
, “A new proof of scattering below the ground state for the non-radial focusing NLS
,” Math. Res. Lett.
25
(6
), 1805
–1825
(2018
).25.
T.
Ogawa
and Y.
Tsutsumi
, “Blow-up of H1 solution for the nonlinear Schrödinger equation
,” J. Differ. Equations
92
(2
), 317
–330
(1991
).26.
A.
Arora
, B.
Dodson
, and J.
Murphy
, “Scattering below the ground state for the 2d radial nonlinear Schrödinger equation
,” Proc. Am. Math. Soc.
148
(4
), 1653
–1663
(2020
).27.
M.
Keel
and T.
Tao
, “Endpoint Strichartz estimates
,” Am. J. Math.
120
, 360
–413
(1998
).28.
K.
Nakanishi
, “Remarks on the energy scattering for nonlinear Klein-Gordon and Schrödinger equations
,” Tohoku Math. J.
53
(2
), 285
–303
(2001
).29.
B.
Ruf
, “A sharp Trudinger–Moser type inequality for unbounded domains in
,” J. Funct. Anal.
219
(2
), 340
–367
(2005
).30.
Z.
Guo
, Z.
Hani
, and K.
Nakanishi
, “Scattering for the 3D Gross-Pitaevskii equation
,” Commun. Math. Phys.
359
(1
), 265
–295
(2018
).31.
M. I.
Weinstein
, “Nonlinear Schrödinger equations and sharp interpolation estimates
,” Commun. Math. Phys.
87
, 567
–576
(1983
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.