We revisit the scattering problems for the 2D mass super-critical Schrödinger and Klein–Gordon equations with radial data below the ground state in the energy space. We give an alternative proof of energy scattering for both the defocusing and focusing cases using the ideas in the work of Dodson and Murphy [Proc. Am. Math. Soc. 145, 4859 (2017)]. Our results also include the exponential type nonlinearities, which seem to be new for the focusing exponential non-linear Schrödinger equation.

1.
K.
Nakanishi
, “
Energy scattering for nonlinear Klein–Gordon and Schrödinger equations in spatial dimensions 1 and 2
,”
J. Funct. Anal.
169
(
1
),
201
225
(
1999
).
2.
S.
Ibrahim
,
N.
Masmoudi
, and
K.
Nakanishi
, “
Scattering threshold for the focusing nonlinear Klein–Gordon equation
,”
Anal. PDE
4
(
3
),
405
460
(
2011
).
3.
T.
Inui
, “
Scattering and blow-up for the focusing nonlinear Klein–Gordon equation with complex-valued data
,”
Ann. Henri Poincaré
18
(
1
),
307
343
(
2017
).
4.
T.
Akahori
and
H.
Nawa
, “
Blowup and scattering problems for the nonlinear Schrödinger equations
,”
Kyoto J. Math.
53
(
3
),
629
672
(
2010
).
5.
D.
Fang
,
J.
Xie
, and
T.
Cazenave
, “
Scattering for the focusing energy-subcritical nonlinear Schrödinger equation
,”
Sci. Chin. Math.
54
(
10
),
20
37
(
2011
).
6.
C. D.
Guevara
, “
Global behavior of finite energy solutions to the d-dimensional focusing nonlinear Schrödinger equation
,”
Appl. Math. Res. Express
2014
(
2
),
177
243
(
2013
).
7.
B.
Dodson
, “
Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state
,”
Adv. Math.
285
,
1589
1618
(
2015
).
8.
B.
Dodson
, “
Global well-posedness and scattering for the defocusing L2-critical nonlinear Schrödinger equation when d = 2
,”
Duke Math. J.
165
(
18
),
3435
3516
(
2016
).
9.
R.
Killip
,
T.
Tao
, and
M.
Visan
, “
The cubic nonlinear Schrödinger equation in two dimensions with radial data
,”
J. Eur. Math. Soc.
11
(
6
),
1203
1258
(
2009
).
10.
M.
Nakamura
and
T.
Ozawa
, “
Nonlinear Schrödinger equations in the Sobolev space of critical order
,”
J. Funct. Anal.
155
,
364
380
(
1998
).
11.
M.
Nakamura
and
T.
Ozawa
, “
Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth
,”
Math. Z.
231
,
479
487
(
1999
).
12.
M.
Nakamura
and
T.
Ozawa
, “
The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order
,”
Discrete Contin. Dyn. Syst.
5
(
1
),
215
231
(
1999
).
13.
B.
Wang
,
C.
Hao
, and
H.
Hudzik
, “
Energy scattering theory for the nonlinear Schrödinger equations with exponential growth in lower spatial dimensions
,”
J. Differ. Equations
228
(
1
),
311
338
(
2006
).
14.
J.
Colliander
,
S.
Ibrahim
,
M.
Majdoub
, and
N.
Masmoudi
, “
Energy critical NLS in two space dimension
,”
J. Hyperbolic Differ. Equations
06
,
549
575
(
2009
).
15.
S.
Ibrahim
,
M.
Majdoub
, and
N.
Masmoudi
, “
Global solutions for a semilinear, two-dimensional Klein-Gordon equation with exponential-type nonlinearity
,”
Commun. Pure Appl. Math.
59
(
11
),
1639
1658
(
2006
).
16.
S.
Ibrahim
,
M.
Majdoub
, and
N.
Masmoudi
, “
Ill-posedness of H1-supercritical waves
,”
C. R. Math.
345
(
3
),
133
138
(
2007
).
17.
S.
Ibrahim
,
M.
Majdoub
,
N.
Masmoudi
, and
K.
Nakanishi
, “
Scattering for the two-dimensional energy-critical wave equation
,”
Duke Math. J.
150
(
2
),
287
329
(
2009
).
18.
S.
Ibrahim
,
M.
Majdoub
, and
N.
Masmoudi
, “
Double logarithmic inequality with a sharp constant
,”
Proc. Am. Math. Soc.
135
(
1
),
87
97
(
2007
).
19.
S.
Ibrahim
,
M.
Majdoub
,
N.
Masmoudi
, and
K.
Nakanishi
, “
Scattering for the two-dimensional NLS with exponential nonlinearity
,”
Nonlinearity
25
(
6
),
1843
1849
(
2012
).
20.
H.
Bahouri
,
S.
Ibrahim
, and
G.
Perelman
, “
Scattering for the critical 2-d NLS with exponential growth
,”
Differ. Integr. Equations
27
(
3/4
),
233
268
(
2014
).
21.
M.
Sack
and
M.
Struwe
, “
Scattering for a critical nonlinear wave equation in two space dimensions
,”
Math. Ann.
365
(
3-4
),
969
985
(
2016
).
22.
C. E.
Kenig
and
F.
Merle
, “
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case
,”
Invent. Math.
166
(
3
),
645
675
(
2006
).
23.
B.
Dodson
and
J.
Murphy
, “
A new proof of scattering below the ground state for the 3d radial focusing cubic NLS
,”
Proc. Am. Math. Soc.
145
(
11
),
4859
4867
(
2017
).
24.
B.
Dodson
and
J.
Murphy
, “
A new proof of scattering below the ground state for the non-radial focusing NLS
,”
Math. Res. Lett.
25
(
6
),
1805
1825
(
2018
).
25.
T.
Ogawa
and
Y.
Tsutsumi
, “
Blow-up of H1 solution for the nonlinear Schrödinger equation
,”
J. Differ. Equations
92
(
2
),
317
330
(
1991
).
26.
A.
Arora
,
B.
Dodson
, and
J.
Murphy
, “
Scattering below the ground state for the 2d radial nonlinear Schrödinger equation
,”
Proc. Am. Math. Soc.
148
(
4
),
1653
1663
(
2020
).
27.
M.
Keel
and
T.
Tao
, “
Endpoint Strichartz estimates
,”
Am. J. Math.
120
,
360
413
(
1998
).
28.
K.
Nakanishi
, “
Remarks on the energy scattering for nonlinear Klein-Gordon and Schrödinger equations
,”
Tohoku Math. J.
53
(
2
),
285
303
(
2001
).
29.
B.
Ruf
, “
A sharp Trudinger–Moser type inequality for unbounded domains in R2
,”
J. Funct. Anal.
219
(
2
),
340
367
(
2005
).
30.
Z.
Guo
,
Z.
Hani
, and
K.
Nakanishi
, “
Scattering for the 3D Gross-Pitaevskii equation
,”
Commun. Math. Phys.
359
(
1
),
265
295
(
2018
).
31.
M. I.
Weinstein
, “
Nonlinear Schrödinger equations and sharp interpolation estimates
,”
Commun. Math. Phys.
87
,
567
576
(
1983
).
You do not currently have access to this content.