In theories such as teleparallel gravity and its extensions, the frame basis replaces the metric tensor as the primary object of study. A choice of coordinate system, frame basis, and spin-connection must be made to obtain a solution from the field equations of a given teleparallel gravity theory. It is worthwhile to express solutions in an invariant manner in terms of torsion invariants to distinguish between different solutions. In this paper, we discuss the symmetries of teleparallel gravity theories, describe the classification of the torsion tensor and its covariant derivative, and define scalar invariants in terms of the torsion. In particular, we propose a modification of the Cartan–Karlhede algorithm for geometries with torsion (and no curvature or nonmetricity). The algorithm determines the dimension of the symmetry group for a solution and suggests an alternative frame-based approach to calculating symmetries. We prove that the only maximally symmetric solution to any theory of gravitation admitting a non-zero torsion tensor is Minkowski space. As an illustration, we apply the algorithm to six particular exact teleparallel geometries. From these examples, we notice that the symmetry group of the solutions of a teleparallel gravity theory is potentially smaller than their metric-based analogs in general relativity.

1.
S.
Nojiri
and
S. D.
Odintsov
,
Int. J. Geom. Methods Mod. Phys.
04
,
115
(
2007
); arXiv:0601213 [hep-th].
2.
S.
Capozziello
and
M.
De Laurentis
,
Phys. Rep.
509
,
167
(
2011
); arXiv:gr-qc/1108.6266 [gr-qc].
3.
A.
Sharma
and
T. P.
Singh
,
Gen. Relativ. Gravitation
46
,
1821
(
2014
); arXiv:1403.2231 [gr-qc].
4.
B.
Li
,
T. P.
Sotiriou
, and
J. D.
Barrow
,
Phys. Rev. D
83
,
064035
(
2011
); arXiv:1010.1041 [gr-qc].
6.
S.
Bahamonde
,
C. G.
Böhmer
, and
M.
Wright
,
Phys. Rev. D
92
,
104042
(
2015
); arXiv:1508.05120 [gr-qc].
7.
J. G.
Vargas
,
Found. Phys.
22
,
507
(
1992
).
8.
R.
Ferraro
and
F.
Fiorini
,
Phys. Rev. D
75
,
084031
(
2007
); arXiv:gr-qc/0610067 [gr-qc].
9.
G. R.
Bengochea
and
R.
Ferraro
,
Phys. Rev. D
79
,
124019
(
2009
); arXiv:0812.1205 [astro-ph].
10.
T. P.
Sotiriou
,
B.
Li
, and
J. D.
Barrow
,
Phys. Rev. D
83
,
104030
(
2011
); arXiv:1012.4039 [gr-qc].
11.
R.
Ferraro
and
F.
Fiorini
,
Phys. Rev. Lett. B
702
,
75
(
2011
); arXiv:1103.0824 [gr-qc].
12.
Yu. N.
Obukhov
and
J. G.
Pereira
,
Phys. Rev. D
67
,
044016
(
2003
); arXiv:gr-qc/0212080 [gr-qc].
13.
Y. N.
Obukhov
and
G. F.
Rubilar
,
Phys. Rev. D
73
,
124017
(
2006
); arXiv:gr-qc/0605045 [gr-qc].
14.
T. G.
Lucas
,
Y. N.
Obukhov
, and
J. G.
Pereira
,
Phys. Rev. D
80
,
064043
(
2009
); arXiv:0909.2418 [gr-qc].
15.
R.
Aldrovandi
and
J. G.
Pereira
,
Teleparallel Gravity, Fundamental Theories of Physics
(
Springer
,
Dordrecht
,
2013
), Vol. 173.
16.
M.
Krssak
,
R. J.
Van Den Hoogen
,
J. G.
Pereira
,
C. G.
Boehmer
, and
A. A.
Coley
,
Classical Quantum Gravity
36
,
183001
(
2019
); arXiv:1810.12932 [gr-qc].
17.
M.
Krššák
and
E. N.
Saridakis
,
Classical Quantum Gravity
33
,
115009
(
2016
); arXiv:1510.08432 [gr-qc].
18.
M.
Krššák
and
J. G.
Pereira
,
Eur. Phys. J. C
75
,
519
(
2015
); arXiv:1504.07683 [gr-qc].
19.
R.
Hecht
,
F. W.
Hehl
,
J. D.
McCrea
,
E. W.
Mielke
, and
Y.
Ne’eman
,
Phys. Lett. A
172
,
13
(
1992
); arXiv:gr-qc/9210009 [gr-qc].
20.
P. J.
Olver
,
Equivalence, Invariants and Symmetry
(
Cambridge University Press
,
1995
).
21.
J.
Fonseca-Neto
,
M.
Rebouças
, and
A.
Teixeira
,
J. Math. Phys.
33
,
2574
(
1992
).
22.
M.
Hohmann
,
L.
Järv
,
M.
Krššák
, and
C.
Pfeifer
,
Phys. Rev. D
100
,
084002
(
2019
); arXiv:1901.05472 [gr-qc].
23.
M.
Hohmann
,
L.
Järv
, and
U.
Ualikhanova
,
Phys. Rev. D
97
,
104011
(
2018
); arXiv:1801.05786 [gr-qc].
24.
S.
Kobayashi
and
K.
Nomizu
,
Foundations of Differential Geometry
, Wiley Classics Library Vol. 1 (
Wiley
,
1996
).
25.
J. B.
Fonseca-Neto
,
M.
Rebouças
, and
M.
MacCallum
,
Math. Comput. Simul.
42
,
739
(
1996
).
26.
H.
Stephani
,
D.
Kramer
,
M.
MacCallum
,
C.
Hoenselaers
, and
E.
Herlt
,
Exact Solutions of Einstein’s Field Equations
(
Cambridge University Press
,
2009
).
27.
J.
Fonseca
,
Int. J. Mod. Phys.
17
,
4161
(
2002
).
28.
A.
Coley
,
S.
Hervik
, and
N.
Pelavas
,
Classical Quantum Gravity
26
,
025013
(
2009
); arXiv:0901.0791 [gr-qc].
29.
A.
Coley
,
R.
Milson
,
V.
Pravda
, and
A.
Pravdová
,
Classical Quantum Gravity
21
,
5519
(
2004
); arXiv:0410070 [gr-qc].
30.
S.
Hervik
,
Classical Quantum Gravity
28
,
215009
(
2011
); arXiv:1109.2551.
31.
S.
Hervik
and
A.
Coley
,
Classical Quantum Gravity
27
,
095014
(
2010
); arXiv:1002.0505 [gr-qc].
32.
A.
Coley
,
R.
Milson
,
V.
Pravda
, and
A.
Pravdová
,
Classical Quantum Gravity
21
,
L35
(
2004
); arXiv:0401008 [gr-qc].
33.
R.
Milson
,
A.
Coley
,
V.
Pravda
, and
A.
Pravdová
,
Int. J. Geom. Methods Mod. Phys.
2
,
41
(
2005
); arXiv:0401010 [gr-qc].
34.
A.
Coley
,
Classical Quantum Gravity
25
,
033001
(
2008
); arXiv:0710.1598.
35.
G. S.
Hall
,
Symmetries and Curvature Structure in General Relativity
(
World Scientific
,
2004
).
36.
F. W.
Hehl
,
J. D.
McCrea
,
E. W.
Mielke
, and
Y.
Ne’eman
,
Phys. Rep.
258
,
1
(
1995
); arXiv:gr-qc/9402012 [gr-qc].
37.
R.
Milson
and
N.
Pelavas
,
Int. J. Geom. Methods Mod. Phys.
6
,
99
(
2009
); arXiv:0711.3851 [gr-qc].
38.
A.
Coley
,
S.
Hervik
, and
N.
Pelavas
,
Classical Quantum Gravity
26
,
125011
(
2009
); arXiv:0904.4877.
39.
M.
Hohmann
,
J. Math. Phys.
57
,
082502
(
2016
); arXiv:1505.07809 [math-ph].
Addendum:
K.
Hayashi
and
T.
Shirafuji
,
Phys. Rev. D
24
,
3312
(
1982
).
41.
S.
Bahamonde
,
C. G.
Böhmer
, and
M.
Krššák
,
Phys. Lett. B
775
,
37
(
2017
); arXiv:1706.04920 [gr-qc].
42.
P. A.
Gonzalez
and
Y.
Vasquez
,
Phys. Rev. D
92
,
124023
(
2015
); arXiv:1508.01174 [hep-th].
43.
G.
Kofinas
and
E. N.
Saridakis
,
Phys. Rev. D
90
,
084044
(
2014
); arXiv:1404.2249 [gr-qc].
44.
S.
Bahamonde
and
C. G.
Böhmer
,
Eur. Phys. J. C
76
,
578
(
2016
); arXiv:1606.05557 [gr-qc].
45.
Y.-F.
Cai
,
S.
Capozziello
,
M.
De Laurentis
, and
E. N.
Saridakis
,
Rep. Prog. Phys.
79
,
106901
(
2016
); arXiv:1511.07586 [gr-qc].
46.
R. J.
van den Hoogen
,
J. Math. Phys.
58
,
122501
(
2017
).
You do not currently have access to this content.