In this paper, we prove a reducibility result for a linear Schrödinger equation with a time quasi-periodic perturbation on . In contrast with previous reducibility results of the Schrödinger equation, the assumption of the small amplitude of the time quasi-periodic perturbation is replaced by fast oscillating.
REFERENCES
1.
M.
Combescure
, “The quantum stability problem for time-periodic perturbations of the harmonic oscillator
,” Ann. Inst. Henri Poincaré Phys. Théor.
47
, 63
–83
(1987
).2.
S.
Kuksin
. Nearly Integrable Infinite-Dimensional Hamiltonian Systems
, Lecture Notes in Mathematics Vol. 1556 (Springer-Verlag Berlin
, 1993
).3.
B.
Grébert
and L.
Thomann
, “KAM for the quantum harmonic oscillator
,” Commun. Math. Phys.
307
, 383
–427
(2011
).4.
W.
Wang
, “Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations
,” Commun. Math. Phys.
277
, 459
–496
(2008
).5.
Z.
Wang
and Z.
Liang
, “Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay
,” Nonlinearity
30
, 1405
–1448
(2017
).6.
D.
Bambusi
and S.
Graffi
, “Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods
,” Commun. Math. Phys.
219
, 465
–480
(2001
).7.
D.
Bambusi
, “Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbation. I
,” Trans. Am. Math. Soc.
370
, 1823
–1865
(2018
).8.
D.
Bambusi
, “Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbation. II
,” Commun. Math. Phys.
353
, 353
–378
(2017
).9.
D.
Bambusi
and R.
Montalto
, “Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbation. III
,” J. Math. Phys.
59
, 122702
(2018
).10.
J.
Liu
and X.
Yuan
, “Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient
,” Commun. Pure Appl. Math.
63
, 1145
–1172
(2010
).11.
H. L.
Eliasson
and S. B.
Kuksin
, “On reducibility of Schrödinger equation with quasi periodic in time potential
,” Commun. Math. Phys.
286
, 125
–135
(2009
).12.
D.
Bambusi
, B.
Grébert
, A.
Maspero
, and D.
Robert
, “Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time dependent perturbation
,” Anal. PDE
11
, 775
–799
(2018
).13.
B.
Grébert
and E.
Paturel
, “On reducibility of Quantum Harmonic oscillator on with quasiperiodic in time potential
,” Ann. Fac. Sci. Toulouse
6
(28
), 977
–1014
(2019
).14.
D.
Bambusi
, B.
Langella
, and R.
Montalto
, “Reducibility of non-resonant transport equation on with unbound perturbation
,” Ann. Henri Poincaré
20
, 1893
–1929
(2019
).15.
R.
Feola
, F.
Giuliani
, R.
Montalto
, and M.
Procesi
, “Reducibility of first order linear operators on tori via Moser’s theorem
,” J. Funct. Anal.
276
, 932
–970
(2019
).16.
Z.
Liang
and X.
Wang
, “On reducibility of 1d wave equation with quasiperiodic in time potentials
,” J. Dyn. Differ. Equations
30
, 957
–978
(2018
).17.
R.
Montalto
, “A reducibility result for a class of linear wave equation on
,” Int. Math. Res. Not.
6
, 1788
–1862
(2019
).18.
Y.
Sun
, J.
Li
, and B.
Xie
, “Reducibility for wave equations of finitely smooth potential with periodic boundary conditions
,” J. Differ. Equations
266
, 2762
–2804
(2019
).19.
L.
Corsi
and G.
Genovese
, “Periodic driving at high frequencies of an impurity in the isotropic XY chain
,” Commun. Math. Phys.
354
, 1173
–1203
(2017
).20.
J.-M.
Fokam
, “Forced vibrations via Nash-Moser iteration
,” Commun. Math. Phys.
283
, 285
–304
(2008
).21.
L.
Franzoi
and A.
Maspero
, “Reducibility for a fast-driven linear Klein-Gordon equation
,” Ann. Mat. Pura Appl.
198
, 1407
–1439
(2019
).22.
H.
Feshbach
, “Unified theory of nuclear reactions
,” Ann. Phys.
5
, 357
–390
(1958
).23.
A. L.
Fetter
and J. D.
Walecka
, Quantum Theory of Many-Particle System
(McGraw-Hill
, New York
, 1971
).24.
25.
A. M.
Berthier
and P.
Collet
, “Existence and completeness of the wave operators in scattering theory with momentum-dependent potentials
,” J. Funct. Anal.
26
, 1
–15
(1977
).26.
A. L.
Figotin
and L. A.
Pastur
, “Schrödinger operator with a nonlocal potential whose absolutely continous and point spectra coexist
,” Commun. Math. Phys.
130
, 357
–380
(1990
).27.
M. A.
Shubin
, Pseudodifferential Operators and Spectral Theory
, 2nd ed. (Springer-Verlag Berlin
, 2001
).28.
A.
Maspero
and D.
Robert
, “On time dependent Schrödinger equations: Global well-posedness and growth of Sobolev norms
,” J. Funct. Anal.
273
, 721
–781
(2017
).29.
A.
Maspero
, “Lower bounds on the growth of Sobolev norms in some linear time dependent Schrödinger equations
,” Math. Res. Lett.
26
, 1197
–1215
(2019
).30.
© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.