In this paper, we prove a reducibility result for a linear Schrödinger equation with a time quasi-periodic perturbation on T. In contrast with previous reducibility results of the Schrödinger equation, the assumption of the small amplitude of the time quasi-periodic perturbation is replaced by fast oscillating.

1.
M.
Combescure
, “
The quantum stability problem for time-periodic perturbations of the harmonic oscillator
,”
Ann. Inst. Henri Poincaré Phys. Théor.
47
,
63
83
(
1987
).
2.
S.
Kuksin
.
Nearly Integrable Infinite-Dimensional Hamiltonian Systems
, Lecture Notes in Mathematics Vol. 1556 (
Springer-Verlag Berlin
,
1993
).
3.
B.
Grébert
and
L.
Thomann
, “
KAM for the quantum harmonic oscillator
,”
Commun. Math. Phys.
307
,
383
427
(
2011
).
4.
W.
Wang
, “
Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations
,”
Commun. Math. Phys.
277
,
459
496
(
2008
).
5.
Z.
Wang
and
Z.
Liang
, “
Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay
,”
Nonlinearity
30
,
1405
1448
(
2017
).
6.
D.
Bambusi
and
S.
Graffi
, “
Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods
,”
Commun. Math. Phys.
219
,
465
480
(
2001
).
7.
D.
Bambusi
, “
Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbation. I
,”
Trans. Am. Math. Soc.
370
,
1823
1865
(
2018
).
8.
D.
Bambusi
, “
Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbation. II
,”
Commun. Math. Phys.
353
,
353
378
(
2017
).
9.
D.
Bambusi
and
R.
Montalto
, “
Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbation. III
,”
J. Math. Phys.
59
,
122702
(
2018
).
10.
J.
Liu
and
X.
Yuan
, “
Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient
,”
Commun. Pure Appl. Math.
63
,
1145
1172
(
2010
).
11.
H. L.
Eliasson
and
S. B.
Kuksin
, “
On reducibility of Schrödinger equation with quasi periodic in time potential
,”
Commun. Math. Phys.
286
,
125
135
(
2009
).
12.
D.
Bambusi
,
B.
Grébert
,
A.
Maspero
, and
D.
Robert
, “
Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time dependent perturbation
,”
Anal. PDE
11
,
775
799
(
2018
).
13.
B.
Grébert
and
E.
Paturel
, “
On reducibility of Quantum Harmonic oscillator on Rdwith quasiperiodic in time potential
,”
Ann. Fac. Sci. Toulouse
6
(
28
),
977
1014
(
2019
).
14.
D.
Bambusi
,
B.
Langella
, and
R.
Montalto
, “
Reducibility of non-resonant transport equation on Tdwith unbound perturbation
,”
Ann. Henri Poincaré
20
,
1893
1929
(
2019
).
15.
R.
Feola
,
F.
Giuliani
,
R.
Montalto
, and
M.
Procesi
, “
Reducibility of first order linear operators on tori via Moser’s theorem
,”
J. Funct. Anal.
276
,
932
970
(
2019
).
16.
Z.
Liang
and
X.
Wang
, “
On reducibility of 1d wave equation with quasiperiodic in time potentials
,”
J. Dyn. Differ. Equations
30
,
957
978
(
2018
).
17.
R.
Montalto
, “
A reducibility result for a class of linear wave equation on Td
,”
Int. Math. Res. Not.
6
,
1788
1862
(
2019
).
18.
Y.
Sun
,
J.
Li
, and
B.
Xie
, “
Reducibility for wave equations of finitely smooth potential with periodic boundary conditions
,”
J. Differ. Equations
266
,
2762
2804
(
2019
).
19.
L.
Corsi
and
G.
Genovese
, “
Periodic driving at high frequencies of an impurity in the isotropic XY chain
,”
Commun. Math. Phys.
354
,
1173
1203
(
2017
).
20.
J.-M.
Fokam
, “
Forced vibrations via Nash-Moser iteration
,”
Commun. Math. Phys.
283
,
285
304
(
2008
).
21.
L.
Franzoi
and
A.
Maspero
, “
Reducibility for a fast-driven linear Klein-Gordon equation
,”
Ann. Mat. Pura Appl.
198
,
1407
1439
(
2019
).
22.
H.
Feshbach
, “
Unified theory of nuclear reactions
,”
Ann. Phys.
5
,
357
390
(
1958
).
23.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle System
(
McGraw-Hill
,
New York
,
1971
).
24.
G. R.
Satchler
,
Direct Nuclear Reaction
(
Clarendon
,
Oxford
,
1983
).
25.
A. M.
Berthier
and
P.
Collet
, “
Existence and completeness of the wave operators in scattering theory with momentum-dependent potentials
,”
J. Funct. Anal.
26
,
1
15
(
1977
).
26.
A. L.
Figotin
and
L. A.
Pastur
, “
Schrödinger operator with a nonlocal potential whose absolutely continous and point spectra coexist
,”
Commun. Math. Phys.
130
,
357
380
(
1990
).
27.
M. A.
Shubin
,
Pseudodifferential Operators and Spectral Theory
, 2nd ed. (
Springer-Verlag Berlin
,
2001
).
28.
A.
Maspero
and
D.
Robert
, “
On time dependent Schrödinger equations: Global well-posedness and growth of Sobolev norms
,”
J. Funct. Anal.
273
,
721
781
(
2017
).
29.
A.
Maspero
, “
Lower bounds on the growth of Sobolev norms in some linear time dependent Schrödinger equations
,”
Math. Res. Lett.
26
,
1197
1215
(
2019
).
30.
R.
Bhatia
,
Matrix Analysis
(
Springer-Verlag
,
New York
,
1997
).
You do not currently have access to this content.