This paper deals with a model the equatorial water waves with the Coriolis effect in the rotating fluid, which is called rotation-two-component Camassa–Holm system. The purpose of this work is to utilize the pseudo-parabolic regularization to establish the existence and uniqueness of weak solutions in a lower order Sobolev space Hs(R)×Hs1(R) with 1<s32.

1.
L.
Fan
,
H.
Gao
, and
Y.
Liu
, “
On the rotation-two-component Camassa-Holm system modelling the equatorial water waves
,”
Adv. Math.
291
,
59
89
(
2016
).
2.
A.
Fokas
and
B. S.
Fuchssteiner
, “
Symplectic structures, their Bäcklund transformation and hereditary symmetries
,”
Physica D
4
,
47
66
(
1981
).
3.
R.
Camassa
and
D. D.
Holm
, “
An integrable shallow water equation with peaked solitons
,”
Phys. Rev. Lett.
71
,
1661
1664
(
1993
).
4.
A.
Constantin
, “
The trajectories of particles in Stokes waves
,”
Invent. Math.
166
,
523
535
(
2006
).
5.
A.
Constantin
, “
Particle trajectories in extreme Stokes waves
,”
IMA J. Appl. Math.
77
,
293
307
(
2012
).
6.
A.
Constantin
and
J.
Escher
, “
Analyticity of periodic traveling free surface water waves with vorticity
,”
Ann. Math.
173
,
559
568
(
2011
).
7.
J. F.
Toland
, “
Stokes waves
,”
Topol. Methods Nonlinear Anal.
7
,
1
48
(
1996
).
8.
A.
Constantin
and
W. A.
Strauss
, “
Stability of peakons
,”
Commun. Pure Appl. Math.
53
,
603
610
(
2000
).
9.
A.
Constantin
and
W. A.
Strauss
, “
Stability of the Camassa-Holm solitons
,”
J. Nonlinear Sci.
12
,
415
422
(
2002
).
10.
R.
Camassa
,
D. D.
Holm
, and
J. M.
Hyman
, “
A new integrable shallow water equation
,”
Adv. Appl. Mech.
31
,
1
33
(
1994
).
11.
A.
Constantin
and
J.
Escher
, “
Wave breaking for nonlinear nonlocal shallow water equations
,”
Acta Math.
181
,
229
243
(
1998
).
12.
A.
Bressan
and
A.
Constantin
, “
Global conservative solutions of the Camassa-Holm equation
,”
Arch. Ration. Mech. Anal.
183
,
215
239
(
2007
).
13.
A.
Bressan
and
A.
Constantin
, “
Global dissipative solutions of the Camassa-Holm equation
,”
Anal. Appl.
05
,
1
27
(
2007
).
14.
G.
Rodríguez-Blanco
, “
On the Cauchy problem for the Camassa-Holm equation
,”
Nonlinear Anal.
46
,
309
327
(
2001
).
15.
A.
Constantin
and
J.
Escher
, “
Well-posedness, global existence, and blow up phenomena for a periodic quasi-linear hyperbolic equation
,”
Commun. Pure Appl. Math.
51
,
475
504
(
1998
).
16.
A.
Costantin
and
J.
Escher
, “
Global existence of solutions and blow-up for a shallow water equation
,”
Ann. Sc. Norm. Super. Pisa CL. Sci.
26
,
303
328
(
1998
).
17.
R.
Danchin
, “
A few remarks on the Camassa-Holm equation
,”
Differ. Integral Equations
14
,
953
988
(
2001
).
18.
L.
Brandolese
, “
Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces
,”
Int. Math. Res. Not. IMRN
2012
,
5161
5181
.
19.
A. A.
Himonas
,
G.
Misiołek
,
G.
Ponce
, and
Y.
Zhou
, “
Persistence properties and unique continuation of solutions of the Camassa-Holm equation
,”
Commun. Math. Phys.
271
,
511
522
(
2007
).
20.
A.
Constantin
and
L.
Molinet
, “
Global weak solutions for a shallow water equation
,”
Commun. Math. Phys.
211
,
45
61
(
2000
).
21.
Z.
Xin
and
P.
Zhang
, “
On the weak solutions to a shallow water equation
,”
Commun. Pure Appl. Math.
53
,
1411
1433
(
2000
).
22.
M.
Chen
,
S.-Q.
Liu
, and
Y.
Zhang
, “
A 2-component generalization of the Camassa-Holm equation and its solutions
,”
Lett. Math. Phys.
75
,
1
15
(
2006
).
23.
G.
Falqui
, “
On a Camassa-Holm type equation with two dependent variables
,”
J. Phys. A: Math. Gen.
39
,
327
342
(
2006
).
24.
A.
Constantin
and
R. I.
Ivanov
, “
On an integrable two-component Camassa-Holm shallow water system
,”
Phys. Lett. A
372
,
7129
7132
(
2008
).
25.
R.
Ivanov
, “
Two-component integrable systems modelling shallow water waves: The constant vorticity case
,”
Wave Motion
46
,
389
396
(
2009
).
26.
C.
Guan
and
Z.
Yin
, “
Global weak solutions for a two-component Camassa-Holm shallow water system
,”
J. Funct. Anal.
260
,
1132
1154
(
2011
).
27.
C.
Guan
,
H.
He
, and
Z.
Yin
, “
Well-posedness, blow-up phenomena and persistence properties for a two-component water wave system
,”
Nonlinear Anal. Real World Appl.
25
,
219
237
(
2015
).
28.
C.
Guan
and
Z.
Yin
, “
Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system
,”
J. Differ. Equations
248
,
2003
2014
(
2010
).
29.
G.
Gui
and
Y.
Liu
, “
On the global existence and wave-breaking criteria for the two-component Camassa-Holm system
,”
J. Funct. Anal.
258
,
4251
4278
(
2010
).
30.
G.
Gui
and
Y.
Liu
, “
On the Cauchy problem for the two-component Camassa-Holm system
,”
Math. Z.
268
,
45
66
(
2011
).
31.
J.
Escher
,
O.
Lechtenfeld
, and
Z.
Yin
, “
Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation
,”
Discrete Contin. Dyn. Syst.
19
,
493
513
(
2007
).
32.
L.
Wei
,
Y.
Wang
, and
H.
Zhang
, “
Breaking waves and persistence property for a two-component Camassa-Holm system
,”
J. Math. Anal. Appl.
445
,
1084
1096
(
2017
).
33.
R. M.
Chen
and
Y.
Liu
, “
Wave breaking and global existence for a generalized two-component Camassa-Holm system
,”
Int. Math. Res. Not. IMRN.
6
,
1381
1416
(
2011
).
34.
Y.
Han
,
F.
Guo
, and
H.
Gao
, “
On solitary waves and wave-breaking phenomena for a generalized two-component integrable Dulin-Gottwald-Holm system
,”
J. Nonlinear Sci.
23
,
617
656
(
2013
).
35.
F.
Guo
,
H.
Gao
, and
Y.
Liu
, “
On the wave-breaking phenomena for the two-component Dullin-Gottwald-Holm system
,”
J. London Math. Soc.
86
,
810
834
(
2012
).
36.
Y.
Chen
,
H.
Gao
, and
Y.
Liu
, “
On the Cauchy problem for the two-component Dullin-Gottwald-Holm system
,”
Discrete Contin. Dyn. Syst.
33
,
3407
3441
(
2013
).
37.
X.
Liu
and
Z.
Yin
, “
Local well-posedness and stability of solitary waves for the two-component Dullin-Gottwald-Holm system
,”
Nonlinear Anal. Real World Appl.
88
,
1
15
(
2013
).
38.
F.
Guo
and
R.
Wang
, “
On the persistence and unique continuation properties for an integrable two-component Dullin-Gottwald-Holm system
,”
Nonlinear Anal.
96
,
38
46
(
2014
).
39.
R. M.
Chen
,
L.
Fan
,
H.
Gao
, and
Y.
Liu
, “
Breaking waves and solitary waves to the rotation-two-component Camassa-Holm system
,”
SIAM J. Math. Anal.
49
,
3573
3602
(
2017
).
40.
L.
Zhang
and
B.
Liu
, “
Well-posedness, blow-up criteria and Gevrey regularity for a rotation-two-component Camassa-Holm system
,”
Discrete Contin. Dyn. Syst.
38
,
2655
2685
(
2018
).
41.
E.
Fana
and
M.
Yuen
, “
Peakon weak solutions for the rotation-two-component Camassa-Holm system
,”
Appl. Math. Lett.
97
,
53
59
(
2019
).
42.
Y.
Guo
and
Z.
Yin
, “
The rotational speed limit and the blow-up phenomena of the rotation 2-component Camassa-Holm system
,”
Monatsh. Math.
190
,
301
332
(
2019
).
43.
C.
Wang
,
R.
Zeng
,
S.
Zhou
,
B.
Wang
, and
C.
Mu
, “
Continuity for the rotation-two-component Camassa-Holm system
,”
Discrete Contin. Dyn. Syst. Ser. B
24
,
6633
6652
(
2019
).
44.
Y. A.
Li
and
P. J.
Olver
, “
Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation
,”
J. Differ. Equations
162
,
27
63
(
2000
).
45.
T.
Kato
and
G.
Ponce
, “
Commutator estimates and Navier-Stokes equations
,”
Commun. Pure Appl. Math.
41
,
203
208
(
1988
).
46.
J. L.
Bona
and
R.
Smith
, “
The initial value problem for the Korteweg-de Vries equation
,”
Philos. Trans. R. Soc. London, Ser. A
278
,
555
601
(
1975
).
47.
S. Y.
Lai
and
S. Y.
Wu
, “
Existence of weak solutions in lower order Sobolev space for a Camassa-Holm-type equation
,”
J. Phys. A: Math. Theor.
43
,
13pp
(
2010
).
48.
W.
Walter
,
Differential and Integral Inequalities
(
Springer-Verlag
,
New York
,
1970
).
49.
J. L.
Lions
,
Quelques Méthodes dé Résolution des Problémes aux Limites Non linéaires
(
Dunod
,
Gauthier-Villars, Paris
,
1969
).
You do not currently have access to this content.