We consider generalized complete intersection manifolds in the product space of projective spaces and work out useful aspects pertaining to the cohomology of sheaves over them. First, we present and prove a vanishing theorem on the cohomology groups of sheaves for subvarieties of the ambient product space of projective spaces. We then prove a birational equivalence between configuration matrices of complete intersection Calabi–Yau manifolds. We also present a formula of the genus of curves in generalized complete intersection manifolds. Some of these curves arise as the fixed point locus of certain symmetry group action on the generalized complete intersection Calabi–Yau manifolds. We also make a blowing-up along curves by which one can generate new Calabi–Yau manifolds. Moreover, an approach on spectral sequences is used to compute Hodge numbers of generalized complete intersection Calabi–Yau manifolds and the genus of curves therein.

1.
P.
Candelas
,
A. M.
Dale
,
C. A.
Lütken
, and
R.
Schimmrigk
, “
Complete intersection Calabi-Yau manifolds
,”
Nucl. Phys. B
298
,
493
(
1988
).
2.
P.
Green
and
T.
Hubsch
, “
Calabi-Yau manifolds as complete intersections in products of complex projective spaces
,”
Commun. Math. Phys.
109
,
99
(
1987
).
3.
S.-T.
Yau
, “
Compact three-dimensional Kähler manifolds with zero Ricci curvature
,” in
Proceedings of the Symposium on Anomalies, Geometry, Topology
(
World Scientific Publishing
,
Singapore
,
1985
),
395
406
.
4.
L. B.
Anderson
,
F.
Apruzzi
,
X.
Gao
,
J.
Gray
, and
S.-J.
Lee
, “
A new construction of Calabi-Yau manifolds: Generalized CICYs
,”
Nucl. Phys. B
906
,
441
(
2016
); arXiv:1507.03235 [hep-th].
5.
I.
Brunner
,
M.
Lynker
, and
R.
Schimmrigk
, “
Unification of M-theory and F-theory Calabi-Yau fourfold vacua
,”
Nucl. Phys. B
498
,
156
(
1997
); arXiv:hep-th/9610195.
6.
J.
Gray
,
A. S.
Haupt
, and
A.
Lukas
, “
All complete intersection Calabi-Yau four-folds
,”
J. High Energy Phys.
2013
,
070
; arXiv:1303.1832 [hep-th].
7.
J.
Gray
,
A.
Haupt
, and
A.
Lukas
, “
Calabi-Yau fourfolds in products of projective space
,”
Proc. Symp. Pure Math.
88
,
281
(
2014
).
8.
J.
Gray
,
A. S.
Haupt
, and
A.
Lukas
, “
Topological invariants and fibration structure of complete intersection Calabi-Yau four-folds
,”
J. High Energy Phys.
2014
,
093
; arXiv:1405.2073 [hep-th].
9.
L. B.
Anderson
,
X.
Gao
,
J.
Gray
, and
S. J.
Lee
, “
Multiple fibrations in Calabi-Yau geometry and string dualities
,”
J. High Energy Phys.
2016
,
105
; arXiv:1608.07555 [hep-th].
10.
P.
Berglund
and
T.
Hubsch
, “
On Calabi-Yau generalized complete intersections from Hirzebruch varieties and novel K3-fibrations
,”
Adv. Theor. Math. Phys.
22
,
261
(
2018
); arXiv:1606.07420 [hep-th].
11.
P.
Berglund
and
T.
Hubsch
, “
A generalized construction of Calabi-Yau models and mirror symmetry
,”
SciPost Phys.
4
,
009
(
2018
); arXiv:1611.10300 [hep-th].
12.
P.
Deligne
, “
Cohomologie des intersections complètes
,”
Lect. Notes Math.
340
,
39
61
(
1973
).
13.
N. M.
Katz
and
P.
Sarnak
,
Random Matrices, Frobenius Eigenvalues, and Monodromy
, American Mathematical Society Colloquium Vol. 45 (
AMS
,
Providence, RI
,
1999
).
14.
P.
Deligne
, “
Les intersections complètes de niveau de Hodge un
,”
Invent. Math.
15
,
237
250
(
1972
).
15.
H.
Matsumura
and
P.
Monsky
, “
On the automorphisms of hypersurfaces
,”
J. Math. Kyoto Univ.
3
,
347
361
(
1963
).
16.
D.
Mumford
and
J.
Fogarty
,
Geometric Invariant Theory
(
Springer-Verlag
,
Berlin
,
1982
).
17.
C.
Voisin
,
Hodge Theory and Complex Algebraic Geometry I
, Cambridge Studies in Advanced Mathematics Vol. 76 (
Cambridge University Press
,
2002
).
18.
T.
Ito
, “
Stringy Hodge numbers and p-adic Hodge theory
,”
Compos. Math.
140
(
6
),
1499
1517
(
2004
).
19.
M.
Kontsevich
, Lecture at Orsay,
1995
.
20.
A.
Garbagnati
and
B.
van Geemen
, “
A remark on generalized complete intersections
,”
Nucl. Phys. B
925
,
135
(
2017
); arXiv:1708.00517 [math.AG].
21.
R.
Hartshorne
,
Algebraic Geometry
(
Springer-Verlag
,
Berlin
,
1977
).
22.
M.
Reid
, “
The moduli space of 3-folds with K = 0 may nevertheless be irreducible
,”
Math. Ann.
278
,
329
334
(
1987
).
23.
M.
Gross
, “
Primitive Calabi-Yau threefolds
,”
J. Differ. Geom.
45
(
2
),
288
318
(
1997
).
24.
H.
Lin
,
B.
Wu
, and
S.-T.
Yau
, “
Heterotic string compactification and new vector bundles
,”
Commun. Math. Phys.
345
,
457
475
(
2016
); arXiv:1412.8000 [hep-th].
25.
P.
Candelas
,
G. T.
Horowitz
,
A.
Strominger
, and
E.
Witten
, “
Vacuum configurations for superstrings
,”
Nucl. Phys. B
258
,
46
(
1985
).
26.
J. J.
Heckman
,
H.
Lin
, and
S.-T.
Yau
, “
Building blocks for generalized heterotic/F-theory duality
,”
Adv. Theor. Math. Phys.
18
,
1463
1503
(
2014
); arXiv:1311.6477 [hep-th].
27.
I. V.
Melnikov
,
R.
Minasian
, and
S.
Sethi
, “
Heterotic fluxes and supersymmetry
,”
J. High Energy Phys.
2014
,
174
(
2014
); arXiv:1403.4298 [hep-th].
28.
H.
Lin
and
T.
Zheng
, “
Higher dimensional generalizations of twistor spaces
,”
J. Geom. Phys.
114
,
492
505
(
2017
); arXiv:1609.09438 [math.DG].
29.
P.
Berglund
and
T.
Hübsch
, “
A generalized construction of mirror manifolds
,”
Nucl. Phys. B
393
,
377
(
1993
) [Stud. Adv. Math. 9, 327 (1998)]; arXiv:hep-th/9201014.
30.
V. V.
Batyrev
, “
Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties
,”
J. Alg. Geom.
3
,
493
(
1994
); arXiv:alg-geom/9310003.
31.
S.
Hosono
,
A.
Klemm
,
S.
Theisen
, and
S.-T.
Yau
, “
Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces
,”
Nucl. Phys. B
433
,
501
(
1995
); arXiv:hep-th/9406055.
32.
P.
Berglund
and
S. H.
Katz
, “
Mirror symmetry constructions: A review
,”
Stud. Adv. Math.
1
,
87
(
1996
); arXiv:hep-th/9406008.
33.
E.
Witten
, “
Phases of N = 2 theories in two-dimensions
,”
Nucl. Phys. B
403
,
159
(
1993
) [Stud. Adv. Math. 1, 143 (1996)]; arXiv:hep-th/9301042.
34.
E.
Sharpe
, “
A few recent developments in 2d (2,2) and (0,2) theories
,”
Proc. Symp. Pure Math.
93
,
67
(
2015
); arXiv:1501.01628 [hep-th].
35.
C.
Beasley
and
E.
Witten
, “
New instanton effects in string theory
,”
J. High Energy Phys.
2006
,
060
; arXiv:hep-th/0512039.
36.
E.
Witten
, “
Nonperturbative superpotentials in string theory
,”
Nucl. Phys. B
474
,
343
(
1996
); arXiv:hep-th/9604030.
37.
L. B.
Anderson
,
X.
Gao
,
J.
Gray
, and
S. J.
Lee
, “
Fibrations in CICY threefolds
,”
J. High Energy Phys.
2017
,
077
; arXiv:1708.07907 [hep-th].
38.
L. B.
Anderson
,
F.
Apruzzi
,
X.
Gao
,
J.
Gray
, and
S. J.
Lee
, “
Instanton superpotentials, Calabi-Yau geometry, and fibrations
,”
Phys. Rev. D
93
,
086001
(
2016
); arXiv:1511.05188 [hep-th].
39.
W.
Fulton
,
Algebraic Curves
(
Addison-Wesley
,
1989
).
40.
R.
Bott
, “
Homogeneous vector bundles
,”
Ann. Math. (2)
66
,
203
248
(
1957
).
41.
C.
Okonek
,
M.
Schneider
, and
H.
Spindler
, “
Vector bundles on complex projective spaces
,” in
Progress in Mathematics
(
Birkhauser
,
1980
), Vol. 3.
You do not currently have access to this content.