We provide a complete geometric description of the set of synchronous quantum correlations for the three-experiment two-outcome scenario. We show that these correlations form a closed set. Moreover, every correlation in this set can be realized using projection valued measures on a Hilbert space of dimension no more than 16.
REFERENCES
1.
J. S.
Bell
, “On the Einstein Podolsky Rosen paradox
,” Phys. Phys. Fiz.
1
, 195
–200
(1964
).2.
C.
Bennett
and G.
Brassard
, “Quantum cryptography: Public key distribution and coin tossing
,” Theor. Comput. Sci.
560
(Pt. 1), 7
–11
(2014
).3.
T.
Vidick
and S.
Wehner
, “More nonlocality with less entanglement
,” Phys. Rev. A
83
, 052310
(2011
).4.
D.
Collins
and N.
Gisin
, “A relevant two qubit bell inequality inequivalent to the CHSH inequality
,” J. Phys. A: Math. Gen.
37
, 1775
–1787
(2004
).5.
M.
Froissart
, “Constructive generalization of bell’s inequalities
,” Il Nuovo Cimento B (1971-1996)
64
, 241
–251
(1981
).6.
K. F.
Pal
and T.
Vertesi
, “Maximal violation of a bipartite three-setting, two-outcome bell inequality using infinite-dimensional quantum systems
,” Phys. Rev. A
82
, 022116
(2010
).7.
K.
Dykema
, V. I.
Paulsen
, and J.
Prakash
, “The delta game
,” Quantum Inf. Comput.
18
(7,8), 599
–616
(2018
).8.
W.
Slofstra
, “The set of quantum correlations is not closed
,” Forum Math. Pi
7
(e1
), 41
(2019
).9.
K.
Dykema
, V. I.
Paulsen
, and J.
Prakash
, “Non-closure of the set of quantum correlations via graphs
,” Commun. Math. Phys.
365
, 1125
–1142
(2019
).10.
M.
Junge
, M.
Navascues
, C.
Palazuelos
, D.
Perez-Garcia
, V. B.
Scholz
, and R. F.
Werner
, “Connes’ embedding problem and Tsirelson’s problem
,” J. Math. Phys.
52
, 012102
(2011
).11.
T.
Fritz
, “Tsirelson’s problem and Kirchberg’s conjecture
,” Rev. Math. Phys.
24
, 1250012
(2012
).12.
N.
Ozawa
, “About the Connes embedding conjecture: Algebraic approaches
,” Jpn. J. Math.
8
, 147
–183
(2013
).13.
K.
Dykema
and V. I.
Paulsen
, “Synchronous correlation matrices and Connes’ embedding conjecture
,” J. Math. Phys.
57
, 015214
(2016
).14.
S.-J.
Kim
, V. I.
Paulsen
, and C.
Schafhauser
, “A synchronous game for binary constraint systems
,” J. Math. Phys.
59
, 032201
(2018
).15.
K.
Goh
, J.
Kaniewski
, E.
Wolfe
, T.
Vértesi
, X.
Wu
, Y.
Cai
, Y.
Liang
, and V.
Scarani
, “Geometry of the set of quantum correlations
,” Phys. Rev. A
97
, 022104
(2018
).16.
L. P.
Thinh
, A.
Varvitsiotis
, and Y.
Cai
, “Geometric structure of quantum correlators via semidefinite programming
,” Phys. Rev. A
99
, 052108
(2019
).17.
J. F.
Clauser
, M. A.
Horne
, A.
Shimony
, and R. A.
Holt
, “Proposed experiment to test local hidden-variable theories
,” Phys. Rev. Lett.
23
, 880
–884
(1969
).18.
A.
Einstein
, B.
Podolsky
, and N.
Rosen
, “Can quantum-mechanical description of physical reality be considered complete?
,” Phys. Rev.
47
, 777
–780
(1935
).19.
A.
Aspect
, P.
Grangier
, and G.
Roger
, “Experimental tests of realistic local theories via bell’s theorem
,” Phys. Rev. Lett.
47
, 460
–463
(1981
).20.
V. I.
Paulsen
, S.
Severini
, D.
Stahlke
, I. G.
Todorov
, and A.
Winter
, “Estimating quantum chromatic numbers
,” J. Funct. Anal.
270
, 2188
–2222
(2016
).21.
K. R.
Davidson
, C*-algebras by Example
, Fields Institute Monographs Vol. 6 (American Mathematical Society
, Providence, RI
, 1996
), p. xiv+309
.22.
B.
Lackey
and N.
Rodrigues
, “Nonlocal games, synchronous correlations, and bell inequalities
,” arXiv:1707.06200 (2017
).23.
M.
Lupini
, L.
Mancinska
, V. I.
Paulsen
, et al., “Perfect strategies for non-local games
,” Math. Phys. Anal. Geom.
23
, 7
(2020
).24.
E.
Alhajjar
and T.
Russell
, “Maximally entangled correlation sets
,” Houston J. Math.
(unpublished) (2019
).25.
B. S.
Cirel’son
, “Quantum generalizations of bell’s inequality
,” Lett. Math. Phys.
4
, 93
–100
(1980
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.