In this paper, previous considerations concerning differential equations involving a para-Grassmann variable are extended by allowing two independent ordinary variables. For the differential equation of second order, the structure of its solutions is determined and several examples representing analogs of well-known second order differential equations are considered in detail. As a warm-up, the differential equation of first order is treated.

1.
J.
Schwinger
, “
The theory of quantized fields. IV
,”
Phys. Rev.
92
,
1283
1299
(
1953
).
2.
J. L.
Martin
, “
The Feynman principle for a Fermi system
,”
Proc. R. Soc. A
251
,
543
549
(
1959
).
3.
The Supersymmetric World. The Beginning of the Theory
, edited by
G.
Kane
and
M.
Shifman
(
World Scientific Publishing Co., Inc.
,
River Edge, NJ
,
2000
).
4.
M.
Légaré
, “
On a set of Grassmann-valued extensions of systems of ordinary differential equations
,” arXiv:1903.12051 (
2019
).
5.
J.
Monterde
and
O. A.
Sánchez-Valenzuela
, “
Existence and uniqueness of solutions to superdifferential equations
,”
J. Geom. Phys.
10
,
315
343
(
1993
).
6.
H. S.
Green
, “
A generalized method of field quantization
,”
Phys. Rev.
90
,
270
273
(
1953
).
7.
A. J.
Kálnay
, “
A note on Grassmann algebras
,”
Rep. Math. Phys.
9
,
9
13
(
1976
).
8.
Y.
Ohnuki
and
S.
Kamefuchi
,
Quantum Field Theory and Parastatistics
(
Springer
,
Berlin
,
1982
).
9.
A. T.
Filippov
,
A. P.
Isaev
, and
A. B.
Kurdikov
, “
Para-Grassman analysis and quantum groups
,”
Mod. Phys. Lett. A
7
,
2129
2141
(
1992
).
10.
A. T.
Filippov
,
A. P.
Isaev
, and
A. B.
Kurdikov
, “
Para-Grassman extensions of the Virasoro algebra
,”
Int. J. Mod. Phys. A
8
,
4973
5003
(
1993
).
11.
A. T.
Filippov
,
A. P.
Isaev
, and
A. B.
Kurdikov
, “
Para-Grassman differential calculus
,”
Theor. Math. Phys.
94
,
150
165
(
1993
).
12.
C.
Ahn
,
D.
Bernard
, and
A.
LeClair
, “
Fractional supersymmetries in perturbed coset CFTs and integrable soliton theory
,”
Nucl. Phys. B
346
,
409
439
(
1990
).
13.
S.
Durand
, “
Fractional superspace formulation of generalized super-Virasoro algebras
,”
Mod. Phys. Lett.
7
,
2905
2912
(
1992
).
14.
S.
Majid
and
M. J.
Rodríguez-Plaza
, “
Random walk and the heat equation on superspace and anyspace
,”
J. Math. Phys.
35
,
3753
3760
(
1994
).
15.
D.
Ellinas
and
I.
Tsohantjis
, “
Brownian motion on a smash line
,”
J. Nonlinear Math. Phys.
8
,
100
105
(
2001
).
16.
D.
Ellinas
and
I.
Tsohantjis
, “
Random walk and diffusion on a smash line algebra
,”
Infin. Dimens. Anal. Quantum Probab. Relat. Top.
6
,
245
264
(
2003
).
17.
A. P.
Isaev
,
Z.
Popowicz
, and
O.
Santillan
, “
Generalized Grassmann algebras and its connection to the extended supersymmetric models
,” arXiv:hep-th/0110246 (
2001
).
18.
N.
Alvarez-Moraga
, “
Coherent and squeezed states of quantum Heisenberg algebras
,”
J. Phys. A: Math. Gen.
38
,
2375
2398
(
2005
).
19.
M.
Schork
, “
Some algebraical, combinatorial and analytical properties of paragrassmann variables
,”
Int. J. Mod. Phys. A
20
,
4797
4819
(
2005
).
20.
T.
Mansour
and
M.
Schork
, “
On linear differential equations involving a paragrassmann variable
,”
Symmetry, Integrability Geom.: Methods Appl.
5
,
073
(
2009
).
21.
T.
Mansour
and
M.
Schork
, “
On linear differential equations with variable coefficients involving a para-Grassmann variable
,”
J. Math. Phys.
51
,
043512
(
2010
).
22.
T.
Mansour
and
R.
Rayan
, “
On Cauchy-Euler’s differential equation involving a para-Grassmann variable
,”
J. Math. Phys.
59
,
103508
(
2018
).
23.
V.
Kac
and
P.
Cheung
,
Quantum Calculus
(
Springer
,
New York
,
2002
).
24.
V. N.
Shander
, “
Vector fields and differential equations on supermanifolds
,”
Funct. Anal. Appl.
14
,
160
162
(
1980
).
25.
E.
Witten
, “
An interpretation of classical Yang-Mills theory
,”
Phys. Lett. B
77
,
394
398
(
1978
).
26.
S.
Li
,
E.
Shemyakova
, and
T.
Voronov
, “
Differential operators on the superline, Berezinians, and Darboux transformations
,”
Lett. Math. Phys.
107
,
1689
1714
(
2017
).
27.
G.
Salgado
and
J. A.
Vallejo-Rodríguez
, “
The meaning of time and covariant superderivatives in supermechanics
,”
Adv. Math. Phys.
21
,
987524
(
2009
).
You do not currently have access to this content.