We study the optimality of the remainder term in the two-term Weyl law for the Dirichlet Laplacian within the class of Lipschitz regular subsets of . In particular, for the short-time asymptotics of the trace of the heat kernel, we prove that the error term cannot be made quantitatively better than little-o of the second term.
REFERENCES
1.
H.
Weyl
, “Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)
,” Math. Ann.
71
(4
), 441
–479
(1912
).2.
G. V.
Rozenblum
, “On the eigenvalues of the first boundary value problem in unbounded domains
,” Math. USSR-Sb.
18
, 235
–248
(1973
).3.
H.
Weyl
, “Über die randwertaufgabe der strahlungstheorie und asymptotische spektralgesetze
,” J. Reine Angew. Math.
1913
(143
), 177
–202
.4.
V.
Ivrii
, “The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary
,” Funkt. Anal. i Prilozhen.
14
(2
), 25
–34
(1980
).5.
R. M.
Brown
, “The trace of the heat kernel in Lipschitz domains
,” Trans. Am. Math. Soc.
339
(2
), 889
–900
(1993
).6.
R. L.
Frank
and S.
Larson
, “Two-term spectral asymptotics for the Dirichlet Laplacian in a Lipschitz domain
,” J. Reine Angew. Math.
(published online).7.
V. F.
Lazutkin
and D. Ya.
Terman
, “Estimation of the remainder in the Weyl formula
,” Funct. Anal. Appl.
15
(4
), 299
–300
(1982
).8.
M.
van den Berg
and S.
Srisatkunarajah
, “Heat equation for a region in R2 with a polygonal boundary
,” J. London Math. Soc.
s2-37
(1
), 119
–127
(1988
).9.
B. V.
Fedosov
, “Asymptotic formulae for the eigenvalues of the Laplace operator in the case of a polygonal domain
,” Dokl. Akad. Nauk SSSR
151
(4
), 786
–789
(1963
).10.
M.
Kac
, “Can one hear the shape of a drum?
,” Am. Math. Monthly
73
(4
), 1
–23
(1966
), part II.11.
R.
Mazzeo
and J.
Rowlett
, “A heat trace anomaly on polygons
,” Math. Proc. Cambridge Philos. Soc.
159
(2
), 303
–319
(2015
).12.
H. P.
McKean
, Jr. and I. M.
Singer
, “Curvature and the eigenvalues of the Laplacian
,” J. Differ. Geom.
1
(1
), 43
–69
(1967
).13.
B. V.
Fedosov
, “Asymptotic formulae for the eigenvalues of the Laplace operator for a polyhedron
,” Dokl. Akad. Nauk SSSR
157
(3
), 536
–538
(1964
).14.
M. V.
Berry
, “Distribution of modes in fractal resonators
,” in Structural Stability in Physics
, edited by W.
Güttinger
and H.
Eikemeier
(Springer-Verlag
, Berlin
, 1979
), pp. 51
–53
.15.
M. V.
Berry
, “Some geometric aspects of wave motion: Wavefront dislocations, diffraction catastrophes, diffractals
,” in Geometry of the Laplace Operator
(Proc. Sympos. Pure Math., Univ. Hawaii
, Honolulu, HI
, 1979
), Proc. Sympos. Pure Math., XXXVI (Amer. Math. Soc., Providence, RI, 1980), pp. 241
–252
.16.
J.
Brossard
and R.
Carmona
, “Can one hear the dimension of a fractal?
,” Commun. Math. Phys.
104
(1
), 103
–122
(1986
).17.
M. L.
Lapidus
, “Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl–Berry conjecture
,” Trans. Am. Math. Soc.
325
(2
), 465
–529
(1991
).18.
E. B.
Davies
, Heat Kernels and Spectral Theory
, Cambridge Tracts in Mathematics Vol. 92 (Cambridge University Press
, Cambridge
, 1989
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.