We study the optimality of the remainder term in the two-term Weyl law for the Dirichlet Laplacian within the class of Lipschitz regular subsets of Rd. In particular, for the short-time asymptotics of the trace of the heat kernel, we prove that the error term cannot be made quantitatively better than little-o of the second term.

1.
H.
Weyl
, “
Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)
,”
Math. Ann.
71
(
4
),
441
479
(
1912
).
2.
G. V.
Rozenblum
, “
On the eigenvalues of the first boundary value problem in unbounded domains
,”
Math. USSR-Sb.
18
,
235
248
(
1973
).
3.
H.
Weyl
, “
Über die randwertaufgabe der strahlungstheorie und asymptotische spektralgesetze
,”
J. Reine Angew. Math.
1913
(
143
),
177
202
.
4.
V.
Ivrii
, “
The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary
,”
Funkt. Anal. i Prilozhen.
14
(
2
),
25
34
(
1980
).
5.
R. M.
Brown
, “
The trace of the heat kernel in Lipschitz domains
,”
Trans. Am. Math. Soc.
339
(
2
),
889
900
(
1993
).
6.
R. L.
Frank
and
S.
Larson
, “
Two-term spectral asymptotics for the Dirichlet Laplacian in a Lipschitz domain
,”
J. Reine Angew. Math.
(published online).
7.
V. F.
Lazutkin
and
D. Ya.
Terman
, “
Estimation of the remainder in the Weyl formula
,”
Funct. Anal. Appl.
15
(
4
),
299
300
(
1982
).
8.
M.
van den Berg
and
S.
Srisatkunarajah
, “
Heat equation for a region in R2 with a polygonal boundary
,”
J. London Math. Soc.
s2-37
(
1
),
119
127
(
1988
).
9.
B. V.
Fedosov
, “
Asymptotic formulae for the eigenvalues of the Laplace operator in the case of a polygonal domain
,”
Dokl. Akad. Nauk SSSR
151
(
4
),
786
789
(
1963
).
10.
M.
Kac
, “
Can one hear the shape of a drum?
,”
Am. Math. Monthly
73
(
4
),
1
23
(
1966
), part II.
11.
R.
Mazzeo
and
J.
Rowlett
, “
A heat trace anomaly on polygons
,”
Math. Proc. Cambridge Philos. Soc.
159
(
2
),
303
319
(
2015
).
12.
H. P.
McKean
, Jr.
and
I. M.
Singer
, “
Curvature and the eigenvalues of the Laplacian
,”
J. Differ. Geom.
1
(
1
),
43
69
(
1967
).
13.
B. V.
Fedosov
, “
Asymptotic formulae for the eigenvalues of the Laplace operator for a polyhedron
,”
Dokl. Akad. Nauk SSSR
157
(
3
),
536
538
(
1964
).
14.
M. V.
Berry
, “
Distribution of modes in fractal resonators
,” in
Structural Stability in Physics
, edited by
W.
Güttinger
and
H.
Eikemeier
(
Springer-Verlag
,
Berlin
,
1979
), pp.
51
53
.
15.
M. V.
Berry
, “
Some geometric aspects of wave motion: Wavefront dislocations, diffraction catastrophes, diffractals
,” in
Geometry of the Laplace Operator
(
Proc. Sympos. Pure Math., Univ. Hawaii
,
Honolulu, HI
,
1979
), Proc. Sympos. Pure Math., XXXVI (Amer. Math. Soc., Providence, RI, 1980), pp.
241
252
.
16.
J.
Brossard
and
R.
Carmona
, “
Can one hear the dimension of a fractal?
,”
Commun. Math. Phys.
104
(
1
),
103
122
(
1986
).
17.
M. L.
Lapidus
, “
Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl–Berry conjecture
,”
Trans. Am. Math. Soc.
325
(
2
),
465
529
(
1991
).
18.
E. B.
Davies
,
Heat Kernels and Spectral Theory
, Cambridge Tracts in Mathematics Vol. 92 (
Cambridge University Press
,
Cambridge
,
1989
).
You do not currently have access to this content.