One-dimensional long-range Ising models with antiferromagnetic, convex pair interactions are investigated. A new criterion characterizing ground states is given. The criterion and a new transformation yield short proofs identifying and characterizing the ground states. The uniqueness of periodic ground states up to shifts is shown.

1.
J.
Hubbard
, “
Generalized Wigner lattices in one dimension and some applications to tetracyanoquinodimethane (TCNQ)-Salts
,”
Phys. Rev. B
17
,
494
505
(
1978
).
2.
V. L.
Pokrovsky
and
G. V.
Uimin
, “
On the properties of monolayers of absorbed atoms
,”
J. Phys. C: Solid State Phys.
11
,
3535
3549
(
1978
).
3.
P.
Bak
and
R.
Bruinsma
, “
One-dimensional Ising model and the complete devil’s staircase
,”
Phys. Rev. Lett.
49
,
249
251
(
1982
).
4.
S. E.
Burkov
and
Ya. G.
Sinai
, “
Phase diagrams of one-dimensional lattice models with long-range antiferromagnetic interaction
,”
Usp. Mat. Nauk
38
,
205
225
(
1983
).
5.
A.
Kerimov
, “
On the ground states of one dimensional antiferromagnetic models with long range interaction
,”
Teor. Mat. Fiz.
58
,
473
480
(
1984
).
6.
A.
van Enter
,
H.
Koivusalo
, and
J.
Miȩkisz
, “
Sturmian ground states in classical lattice-gas models
,”
J. Stat. Phys.
178
,
832
844
(
2020
).
7.
R. L.
Dobrushin
, “
Description of a random field by means of conditional probabilities and conditions for its regularity
,”
Teor. Veroyatn. Primen.
18
,
201
229
(
1968
).
8.
R. L.
Dobrushin
, “
The problem of uniqueness of a Gibbsian random field and the problem of phase transitions
,”
Funk. Anal. Pril.
2
,
44
57
(
1968
).
9.
D.
Ruelle
, “
Statistical mechanics of a one-dimensional lattice gas
,”
Commun. Math. Phys.
9
,
267
278
(
1968
).
10.
A.
Kerimov
, “
Absence of phase transitions in one-dimensional antiferromagnetic models with long-range interactions
,”
J. Stat. Phys.
72
,
571
620
(
1993
).
11.
A.
Kerimov
, “
Uniqueness of Gibbs states in one-dimensional antiferromagnetic model with long-range interaction
,”
J. Math. Phys.
40
,
4956
4974
(
1999
).
12.
M.
Fannes
,
P.
Vanheuverzwijn
, and
A.
Verbeure
, “
Energy-entropy inequalities for classical lattice systems
,”
J. Stat. Phys.
29
,
547
559
(
1982
).
You do not currently have access to this content.