Sugama–Horton and Ball–Dewar models are low-dimensional dynamical models that treat interactions between turbulence and emerging global structures from turbulence. These models also demonstrate the transition from low- to high-confinement states of fusion plasmas. We prove global existence theorems and global asymptotical stability of the L-mode solutions of the Sugama–Horton and Ball–Dewar models using the Lyapunov method.
REFERENCES
1.
A.
Korobeinikov
, “Stability of ecosystem: Global properties of a general predator-prey model
,” Math. Med. Biol.
26
, 309
–321
(2009
).2.
A.
Korobeinikov
, “Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission
,” Bull. Math. Biol.
68
, 615
–626
(2006
).3.
A.
Korobeinikov
, “Global properties of infectious disease models with nonlinear incidence
,” Bull. Math. Biol.
69
, 1871
–1886
(2007
).4.
R.
Ball
, “Dynamical systems modelling of turbulence-shear flow interactions in magnetized fusion plasma
,” J. Phys.: Conf. Ser.
7
, 191
–202
(2005
).5.
R.
Ball
, “Suppression of turbulence at low power input in a model for plasma confinement transitions
,” Phys. Plasmas
12
, 090904
(2005
).6.
R.
Ball
, R. L.
Dewar
, and H.
Sugama
, “Metamorphosis of plasma turbulence–shear flow dynamics through a transcritical bifurcation
,” Phys. Rev. E
66
, 066408
(2002
).7.
P. H.
Diamond
, Y.-M.
Liang
, B. A.
Carreras
, and P. W.
Terry
, “Self-regulating shear flow turbulence: A paradigm for the L to H transition
,” Phys. Rev. Lett.
72
, 2565
–2568
(1994
).8.
W.
Horton
, G.
Hu
, and G.
Laval
, “Turbulent transport in mixed states of convective cells and sheared flows
,” Phys. Plasmas
3
, 2912
–2923
(1996
).9.
R. A.
Kolesnikov
and J. A.
Krommes
, “Transition to collisionless ion-temperature-gradient-driven plasma turbulence: A dynamical systems approach
,” Phys. Rev. Lett.
94
, 235002
(2005
).10.
V. B.
Lebedev
, P. H.
Diamond
, I.
Gruzinova
, and B. A.
Carreras
, “A minimal dynamical model of edge localized mode phenomena
,” Phys. Plasmas
2
, 3345
–3359
(1995
).11.
H.
Sugama
and W.
Horton
, “L-H confinement mode dynamics in three-dimensional state space
,” Plasma Phys. Control. Fusion
37
, 345
–362
(1995
).12.
13.
A. C.
Hindmarsh
, “ODEPACK: A systematized collection of ODE solvers
,” in Scientific Computing
, edited by R. S.
Stepleman
, et al. (North-Holland
, Amsterdam
, 1983
), pp. 55
–64
.14.
J. W.
Eaton
, D.
Bateman
, S.
Hauberg
, and R.
Wehbring
, GNU Octave version 5.1.0 manual: A high-level interactive language for numerical computations, 2019
, https://www.gnu.org/software/octave/doc/v5.1.0/.15.
E. A.
Coddington
and N.
Levinson
, Theory of Ordinary Differential Equations
(Tata–McGraw Hill
, New Delhi
, 1972
).16.
17.
M. W.
Hirsch
, S.
Smale
, and R. L.
Devaney
, Differential Equations, Dynamical Systems, and an Introduction to Chaos
, Pure and Applied Mathematics Vol. 60 (Elsevier Academic Press
, 2004
).18.
J.
Howse
, “Gradient and Hamiltonian dynamics: Some applications to neural network analysis and system identification
,” Ph.D. thesis, Department of Electrical Engineering, University of New Mexico
, 1995
.19.
J.
LaSalle
and S.
Lefschetz
, Stability by Liapunov’s Direct Method
(Academic Press
, New York
, 1961
).20.
G. A.
Leonov
, I. M.
Burkin
, and A. I.
Shepeljavyi
, Frequency Methods in Oscillation Theory
(Kluwer
, 1996
).21.
G. A.
Leonov
, N. V.
Kuznetsov
, and T. N.
Mokaev
, “Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion
,” Eur. Phys. J. Spec. Top.
224
, 1421
–1458
(2015
).22.
B. A.
Carreras
, L.
Garcia
, and P. H.
Diamond
, “Theory of resistive pressure-gradient-driven turbulence
,” Phys. Fluids
30
, 1388
–1400
(1987
).23.
H.
Sugama
and M.
Wakatani
, “A transport study for resistive interchange mode turbulence based on a renormalized theory
,” J. Phys. Soc. Jpn.
57
, 2010
–2025
(1988
).24.
H.
Sugama
and W.
Horton
, “Shear flow generation by Reynolds stress and suppression of resistive g modes
,” Phys. Plasmas
1
, 345
–355
(1994
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.