Sugama–Horton and Ball–Dewar models are low-dimensional dynamical models that treat interactions between turbulence and emerging global structures from turbulence. These models also demonstrate the transition from low- to high-confinement states of fusion plasmas. We prove global existence theorems and global asymptotical stability of the L-mode solutions of the Sugama–Horton and Ball–Dewar models using the Lyapunov method.

1.
A.
Korobeinikov
, “
Stability of ecosystem: Global properties of a general predator-prey model
,”
Math. Med. Biol.
26
,
309
321
(
2009
).
2.
A.
Korobeinikov
, “
Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission
,”
Bull. Math. Biol.
68
,
615
626
(
2006
).
3.
A.
Korobeinikov
, “
Global properties of infectious disease models with nonlinear incidence
,”
Bull. Math. Biol.
69
,
1871
1886
(
2007
).
4.
R.
Ball
, “
Dynamical systems modelling of turbulence-shear flow interactions in magnetized fusion plasma
,”
J. Phys.: Conf. Ser.
7
,
191
202
(
2005
).
5.
R.
Ball
, “
Suppression of turbulence at low power input in a model for plasma confinement transitions
,”
Phys. Plasmas
12
,
090904
(
2005
).
6.
R.
Ball
,
R. L.
Dewar
, and
H.
Sugama
, “
Metamorphosis of plasma turbulence–shear flow dynamics through a transcritical bifurcation
,”
Phys. Rev. E
66
,
066408
(
2002
).
7.
P. H.
Diamond
,
Y.-M.
Liang
,
B. A.
Carreras
, and
P. W.
Terry
, “
Self-regulating shear flow turbulence: A paradigm for the L to H transition
,”
Phys. Rev. Lett.
72
,
2565
2568
(
1994
).
8.
W.
Horton
,
G.
Hu
, and
G.
Laval
, “
Turbulent transport in mixed states of convective cells and sheared flows
,”
Phys. Plasmas
3
,
2912
2923
(
1996
).
9.
R. A.
Kolesnikov
and
J. A.
Krommes
, “
Transition to collisionless ion-temperature-gradient-driven plasma turbulence: A dynamical systems approach
,”
Phys. Rev. Lett.
94
,
235002
(
2005
).
10.
V. B.
Lebedev
,
P. H.
Diamond
,
I.
Gruzinova
, and
B. A.
Carreras
, “
A minimal dynamical model of edge localized mode phenomena
,”
Phys. Plasmas
2
,
3345
3359
(
1995
).
11.
H.
Sugama
and
W.
Horton
, “
L-H confinement mode dynamics in three-dimensional state space
,”
Plasma Phys. Control. Fusion
37
,
345
362
(
1995
).
12.
L.
Edelstein-Keshet
,
Mathematical Models in Biology
(
SIAM
,
2005
).
13.
A. C.
Hindmarsh
, “
ODEPACK: A systematized collection of ODE solvers
,” in
Scientific Computing
, edited by
R. S.
Stepleman
, et al.
(
North-Holland
,
Amsterdam
,
1983
), pp.
55
64
.
14.
J. W.
Eaton
,
D.
Bateman
,
S.
Hauberg
, and
R.
Wehbring
, GNU Octave version 5.1.0 manual: A high-level interactive language for numerical computations,
2019
, https://www.gnu.org/software/octave/doc/v5.1.0/.
15.
E. A.
Coddington
and
N.
Levinson
,
Theory of Ordinary Differential Equations
(
Tata–McGraw Hill
,
New Delhi
,
1972
).
16.
P.
Hartman
,
Ordinary Differential Equation
(
John Wiley
,
New York
,
1964
).
17.
M. W.
Hirsch
,
S.
Smale
, and
R. L.
Devaney
,
Differential Equations, Dynamical Systems, and an Introduction to Chaos
, Pure and Applied Mathematics Vol. 60 (
Elsevier Academic Press
,
2004
).
18.
J.
Howse
, “
Gradient and Hamiltonian dynamics: Some applications to neural network analysis and system identification
,” Ph.D. thesis,
Department of Electrical Engineering, University of New Mexico
,
1995
.
19.
J.
LaSalle
and
S.
Lefschetz
,
Stability by Liapunov’s Direct Method
(
Academic Press
,
New York
,
1961
).
20.
G. A.
Leonov
,
I. M.
Burkin
, and
A. I.
Shepeljavyi
,
Frequency Methods in Oscillation Theory
(
Kluwer
,
1996
).
21.
G. A.
Leonov
,
N. V.
Kuznetsov
, and
T. N.
Mokaev
, “
Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion
,”
Eur. Phys. J. Spec. Top.
224
,
1421
1458
(
2015
).
22.
B. A.
Carreras
,
L.
Garcia
, and
P. H.
Diamond
, “
Theory of resistive pressure-gradient-driven turbulence
,”
Phys. Fluids
30
,
1388
1400
(
1987
).
23.
H.
Sugama
and
M.
Wakatani
, “
A transport study for resistive interchange mode turbulence based on a renormalized theory
,”
J. Phys. Soc. Jpn.
57
,
2010
2025
(
1988
).
24.
H.
Sugama
and
W.
Horton
, “
Shear flow generation by Reynolds stress and suppression of resistive g modes
,”
Phys. Plasmas
1
,
345
355
(
1994
).
You do not currently have access to this content.