We study the emergent dynamics of a first-order particle swarm model (PSM) on the hyperboloid with a constant negative curvature that corresponds to the special case (p, q) = (1, d) of the PSM on the indefinite special orthogonal group SO(p, q) in the work of Ritchie et al. [Chaos 28, 053116 (2018)]. For the proposed PSM on the hyperboloid, we first establish the global existence of a solution via the extension of a local solution to a global one by the continuity argument and then show that the solutions are uniformly bounded by a quantity only depending on the initial data and the coupling strength although the underlying manifold is not compact. In this paper, we consider both attractive and repulsive couplings. For an attractive regime, we show that the complete synchronization occurs for all initial data, whereas for a repulsive regime, we show that distances between particles diverge to infinity, as time goes on. Finally, we present several numerical results consistent with our theoretical results.

1.
J.
Buck
and
E.
Buck
, “
Biology of synchronous flashing of fireflies
,”
Nature
211
,
562
564
(
1966
).
2.
R. C.
Fetecau
, “
Collective behavior of biological aggregations in two dimensions: A nonlocal kinetic model
,”
Math. Models Methods Appl. Sci.
21
,
1539
1569
(
2011
).
3.
D.
Cumin
and
C. P.
Unsworth
, “
Generalizing the Kuramoto model for the study of neuronal synchronization in the brain
,”
Physica D
226
,
181
196
(
2007
).
4.
M.
Machida
,
T.
Kano
,
S.
Yamada
,
M.
Okumura
,
T.
Imamura
, and
T.
Koyama
, “
Quantum synchronization effects in intrinsic Josephson junctions
,”
Physica C
468
,
689
694
(
2008
).
5.
A. T.
Winfree
, “
Biological rhythms and the behavior of populations of coupled oscillators
,”
J. Theor. Biol.
16
,
15
42
(
1967
).
6.
Y.
Kuramoto
,
Chemical Oscillations, Waves and Turbulence
(
Springer-Verlag
,
Berlin
,
1984
).
7.
Y.
Kuramoto
, “
Self-entrainment of a population of coupled non-linear oscillators
,” in
International Symposium on Mathematical Problems in Mathematical Physics
, Lecture Notes in Physics Vol. 30 (
Springer, Berlin, Heidelberg
,
1975
), pp.
420
422
.
8.
F.
Cucker
and
S.
Smale
, “
Emergent behavior in flocks
,”
IEEE Trans. Automat. Control
52
,
852
862
(
2007
).
9.
T.
Vicsek
,
A.
Czirók
,
E.
Ben-Jacob
,
I.
Cohen
, and
O.
Shochet
, “
Novel type of phase transition in a system of self-driven particles
,”
Phys. Rev. Lett.
75
,
1226
1229
(
1995
).
10.
A.
Aydogdu
,
S. T.
McQuade
, and
N. P.
Duteil
, “
Opinion dynamics on a general compact Riemannian manifold
,”
Networks Heterog. Media
12
,
489
523
(
2017
).
11.
D.
Chi
,
S.-H.
Choi
, and
S.-Y.
Ha
, “
Emergent behaviors of a holonomic particle system on a sphere
,”
J. Math. Phys.
55
,
052703
(
2014
).
12.
R.
Olfati-Saber
, “
Swarms on sphere: A programmable swarm with synchronous behaviors like oscillator networks
,” in
Proceedings of the 45th IEEE conference on Decision and Control
(
IEEE
,
2006
), pp.
5060
5066
.
13.
S.-Y.
Ha
and
D.
Kim
, “
A second-order particle swarm model on a sphere and emergent dynamics
,”
SIAM J. Appl. Dyn. Syst.
18
,
80
116
(
2019
).
14.
S.-Y.
Ha
,
D.
Kim
,
J.
Lee
, and
S. E.
Noh
, “
Particle and kinetic models for swarming particles on a sphere and stability properties
,”
J. Stat. Phys.
174
,
622
655
(
2019
).
15.
M. A.
Lohe
, “
Higher-dimensional generalizations of the Watanabe-Strogatz transform for vector models of synchronization
,”
J. Phys. A: Math. Theor.
51
,
225101
(
2018
).
16.
M. A.
Lohe
, “
Systems of matrix Riccati equations, linear fractional transformations, partial integrability and synchronization
,”
J. Math. Phys.
60
,
072701
(
2019
).
17.
J.
Zhu
, “
Synchronization of Kuramoto model in a high-dimensional linear space
,”
Phys. Lett. A
377
,
2939
2943
(
2013
).
18.
P.
Degond
,
A.
Frouvelle
, and
S.
Merino-Aceituno
, “
A new flocking model through body attitude coordination
,”
Math. Models Methods Appl. Sci.
27
,
1005
1049
(
2017
).
19.
A.
Sarlette
,
R.
Sepulchre
, and
N. E.
Leonard
, “
Autonomous rigid body attitude synchronization
,”
Automatica
45
,
572
577
(
2009
).
20.
R.
Tron
,
B.
Afsari
, and
R.
Vidal
, “
Intrinsic consensus on SO(3) with almost-global convergence
,”
2012 IEEE Conference on Decision and Control
(
IEEE
,
2012
), pp.
2052
2058
.
21.
S.-Y.
Ha
and
S. W.
Ryoo
, “
On the emergence and orbital stability of phase-locked states for the Lohe model
,”
J. Stat. Phys.
163
,
411
439
(
2016
).
22.
M. A.
Lohe
, “
Non-abelian Kuramoto model and synchronization
,”
J. Phys. A: Math. Theor.
42
,
395101
(
2009
).
23.
P.
Degond
,
A.
Frouvelle
,
S.
Merino-Aceituno
, and
A.
Trescases
, “
Quaternions in collective dynamics
,”
Multiscale Model. Simul.
16
,
28
77
(
2018
).
24.
S.-Y.
Ha
,
D.
Ko
, and
S. W.
Ryoo
, “
Emergent dynamics of a generalized Lohe model on some class of Lie groups
,”
J. Stat. Phys.
168
,
171
207
(
2017
).
25.
L.
DeVille
, “
Synchronization and stability for quantum Kuramoto
,”
J. Stat. Phys.
174
,
160
187
(
2019
).
26.
J. C.
Bronski
,
T. E.
Carty
, and
S. E.
Simpson
, “
A matrix-valued Kuramoto model
,”
J. Stat. Phys.
178
,
595
564
(
2020
).
27.
L. M.
Ritchie
,
M. A.
Lohe
, and
A. G.
Williams
, “
Synchronization of relativistic particles in the hyperbolic Kuramoto model
,”
Chaos
28
,
053116
(
2018
).
28.
R. C.
Fetecau
and
B.
Zhang
, “
Self-organization on Riemannian manifolds
,”
J. Geom. Mech.
11
,
397
426
(
2019
).
29.
J. W.
Cannon
,
W. J.
Floyd
,
R.
Kenyon
, and
W. R.
Parry
, “
Hyperbolic geometry
,” in
Flavors of Geometry
(
MSRI Publications
,
1997
), Vol. 31, pp.
59
115
.
30.
J.
Zhang
,
J.
Zhu
, and
C.
Qian
, “
On equilibria and consensus of the Lohe model with identical oscillators
,”
SIAM J. Appl. Dyn. Syst.
17
,
1716
1741
(
2018
).
31.
J.
Markdahl
,
J.
Thunberg
, and
J.
Gonśalves
, “
Almost global consensus on the n-sphere
,”
IEEE Trans. Automat. Control
63
,
1664
1675
(
2018
).
32.
S.-Y.
Ha
,
D.
Ko
, and
S. W.
Ryoo
, “
On the relaxation dynamics of Lohe oscillators on some Riemannian manifolds
,”
J. Stat. Phys.
172
(
2018
),
1427
1478
.
33.
A.
Frouvelle
and
J.-G.
Liu
, “
Long-time dynamics for a simple aggregation equation on the sphere
,” in
International Workshop on Stochastic Dynamics Out of Equilibrium
(
Springer
,
Cham
,
2017
), pp.
457
479
.
34.
I.
Barbǎlat
, “
Systèmes déquations différentielles oscillations non Linéaires
,”
Rev. Math. Pures Appl.
4
,
267
270
(
1959
).
35.
J.
Cho
,
S.-Y.
Ha
,
F.
Huang
,
C.
Jin
, and
D.
Ko
, “
Emergence of bi-cluster flocking for the Cucker-Smale model
,”
Math. Models Methods Appl. Sci.
26
,
1191
1218
(
2016
).
You do not currently have access to this content.