In this paper, we prove a version of Connes’s trace theorem for noncommutative tori of any dimension n ⩾ 2. This allows us to recover and improve earlier versions of this result in dimensions n = 2 and n = 4 by Fathizadeh and Khalkhali. We also recover Connes’s integration formula for flat noncommutative tori of McDonald, Sukochev, and Zanin. As a further application, we prove a curved version of this integration formula in terms of the Laplace–Beltrami operator defined by an arbitrary Riemannian metric. For the class of the so-called self-compatible Riemannian metrics (including the conformally flat metrics of Connes and Tretkoff), this shows that Connes’s noncommutative integral allows us to recover the Riemannian density. This exhibits a neat link between this notion of noncommutative integral and noncommutative measure theory in the sense of operator algebras. As an application of these results, we set up a natural notion of scalar curvature for curved noncommutative tori.

1.
A.
Connes
,
Noncommutative Geometry
(
Academic Press, Inc.
,
San Diego, CA
,
1994
).
2.
J.
Dixmier
, “
Existence de traces non normales
,”
C. R. Acad. Sci. Paris Sér. A–B
262
,
A1107
A1108
(
1966
).
3.
A.
Connes
, “
The action functional in non-commutative geometry
,”
Commun. Math. Phys.
117
,
673
683
(
1988
).
4.
N.
Kalton
,
S.
Lord
,
D.
Potapov
, and
F.
Sukochev
, “
Traces of compact operators and the noncommutative residue
,”
Adv. Math.
235
,
1
55
(
2013
).
5.
V.
Guillemin
, “
A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues
,”
Adv. Math.
55
(
2
),
131
160
(
1985
).
6.
M.
Wodzicki
, “
Spectral asymmetry and noncommutative residue
,” Habilitation Thesis,
Steklov Institute, (former) Soviet Academy of Sciences
,
Moscow
,
1984
(in Russian).
7.
M.
Wodzicki
, “
Noncommutative residue. I. Fundamentals
,” in
K-Theory, Arithmetic and Geometry
(Moscow, 1984–1986), Lecture Notes in Mathematics Vol. 1289 (
Springer
,
Berlin
,
1987
), pp.
320
399
.
8.
A.
Connes
, “
C*-algèbres et géométrie differentielle
,”
C. R. Acad. Sci. Paris, Sér. A
290
,
599
604
(
1980
).
9.
A.
Connes
and
P.
Tretkoff
, “
The Gauss-Bonnet theorem for the noncommutative two torus
, in
Noncommutative Geometry, Arithmetic, and Related Topics
(
Johns Hopkins University Press
,
Baltimore, MD
,
2011
), pp.
141
158
.
10.
A.
Connes
and
H.
Moscovici
, “
Modular curvature for noncommutative two-tori
,”
J. Am. Math. Soc.
27
(
3
),
639
684
(
2014
).
11.
A.
Connes
, “
Noncommutative geometry, the spectral standpoint
,” in
Advances in Noncommutative Geometry
(
Springer
,
2019
), p.
56
; arXiv:1910.10407.
12.
F.
Fathizadeh
and
M.
Khalkhali
, “
Curvature in noncommutative geometry
,” in
Advances in Noncommutative Geometry
(
Springer
,
2019
), p.
75
; arXiv:1901.07438.
13.
F.
Fathizadeh
and
M. W.
Wong
, “
Noncommutative residues for pseudo-differential operators on the noncommutative two-torus
,”
J. Pseudo-Differ. Oper. Appl.
2
(
3
),
289
302
(
2011
).
14.
F.
Fathizadeh
and
M.
Khalkhali
, “
Scalar curvature for noncommutative four-tori
,”
J. Noncommutative. Geom.
9
(
2
),
473
503
(
2015
).
15.
C.
Lévy
,
C.
Neira-Jiménez
, and
S.
Paycha
, “
The canonical trace and the noncommutative residue on the noncommutative torus
,”
Trans. Am. Math. Soc.
368
(
2
),
1051
1095
(
2016
).
16.
R.
Ponge
, “
Noncommutative residue and canonical trace on noncommutative tori. Uniqueness results
,” arXiv:1911.12164.
17.
F.
Fathizadeh
and
M.
Khalkhali
, “
Weyl’s law and Connes’ trace theorem for noncommutative two tori
,”
Lett. Math. Phys.
103
,
1
18
(
2013
).
18.
E.
McDonald
,
F.
Sukochev
, and
D.
Zanin
, “
A C*-algebraic approach to the principal symbol II
,”
Math. Ann.
374
,
273
322
(
2019
).
19.
H.
Ha
and
R.
Ponge
, “
Laplace-Beltrami operators on noncommutative tori
,”
J. Geom. Phys.
150
,
103594
(
2020
).
20.
J.
Rosenberg
, “
Levi-Civita’s theorem for noncommutative tori
,”
SIGMA Symmetry Integrability Geom. Methods Appl.
9
,
071
(
2013
).
21.
A.
Ghorbanpour
and
M.
Khalkhali
, “
Spectral geometry of functional metrics on noncommutative tori
,” arXiv:1811.04004.
22.
G.
Lee
and
R.
Ponge
, “
Functional calculus for elliptic operators on noncommutative tori, I.
,”
J. Pseudo-Differ. Oper. Appl.
(to be published); arXiv:1911.05500.
23.
E.
McDonald
and
R.
Ponge
, “
Cwikel estimates and Connes’ integration formula for curved noncommutative tori
” (unpublished).
24.
I. C.
Gohberg
and
M. G.
Krein
,
Introduction to the Theory of Linear Nonselfadjoint Operators
, Translations of Mathematical Monographs Vol. 18 (
American Mathematical Society
,
Providence, RI
,
1969
).
25.
B.
Simon
,
Trace Ideals and Their Applications
, 2nd ed., Mathematical Surveys and Monographs Vol. 120 (
American Mathematical Society
,
Providence, RI
,
2005
).
26.
S.
Lord
,
F.
Sukochev
, and
D.
Zanin
,
Singular Traces: Theory and Applications
, De Gruyter Studies in Mathematics Vol. 46 (
Walter de Gruyter
,
2012
).
27.
B.
Simon
, “
Analysis with weak trace ideals and the number of bound states of Schrödinger operators
,”
Trans. Am. Math. Soc.
224
,
367
380
(
1976
).
28.
S.
Lord
,
F.
Sukochev
, and
D.
Zanin
, “
Advances in dixmier traces and applications
,” in
Advances in Noncommutative Geometry
(
Springer
,
2019
), p.
75
; arXiv:1901.07438.
29.
K.
Dykema
,
T.
Figiel
,
G.
Weiss
, and
M.
Wodzicki
, “
Commutator structure of operator ideals
,”
Adv. Math.
185
,
1
79
(
2004
).
30.
G. J.
Murphy
,
C*-algebras and Operator Theory
(
Academic Press
,
Boston, MA
,
1990
).
31.
A.
Connes
,
E.
McDonald
,
F.
Sukochev
, and
D.
Zanin
, “
Conformal trace theorem for Julia sets of quadratic polynomials
,”
Ergodic Theory Dyn. Syst.
39
,
2481
2506
(
2019
).
32.
A.
Connes
and
H.
Moscovici
, “
The local index formula in noncommutative geometry
,”
Geom. Funct. Anal.
5
,
174
243
(
1995
).
33.
E.
Semenov
,
F.
Sukochev
,
A.
Usachev
, and
D.
Zanin
, “
Banach limits and traces on L1,
,”
Adv. Math.
285
,
568
628
(
2015
).
34.
J. M.
Lee
,
Introduction to Smooth Manifolds
, Graduate Texts in Mathematics, 2nd ed. (
Springer
,
New York
,
2012
).
35.
S.
Lord
,
D.
Potapov
, and
F.
Sukochev
, “
Measures from Dixmier traces and zeta functions
,”
J. Funct. Anal.
259
,
1915
1949
(
2010
).
36.
R.
Ponge
, “
Noncommutative geometry and lower dimensional volumes in Riemannian geometry
,”
Lett. Math. Phys.
83
,
19
32
(
2008
).
37.
A. H.
Chamseddine
and
A.
Connes
, “
The spectral action principle
,”
Commun. Math. Phys.
186
,
731
750
(
1997
).
38.
A.
Chamseddine
and
W.
van Suijlekom
, “
A survey of spectral models of gravity coupled to matter
,” in
Advances in Noncommutative Geometry
(
Springer
,
2019
), p.
58
; arXiv:1904.12392.
39.
H.
Ha
,
G.
Lee
, and
R.
Ponge
, “
Pseudodifferential calculus on noncommutative tori. I. Oscillating integrals
,”
Int. J. Math.
30
,
1950033
(
2019
).
40.
M. A.
Rieffel
, “
Noncommutative tori-A case study of non-commuative differentiable manifolds
,” in
Geometric and Topological Invariants of Elliptic Operators
, Contemporary Mathematics Series (
American Mathematical Society, Providence, RI
,
1990
), Vol. 105, pp.
191
211
.
41.
A.
Connes
, “
An analogue of the Thom isomorphism for crossed products of a C*-algebra by an action of R
,”
Adv. Math.
39
,
31
55
(
1981
).
42.
S.
Baaj
, “
Calcul pseudo-différentiel et produits croisés deC*-algébres. I
,”
C. R. Acad. Sci. Paris, Sér. I
307
,
581
586
(
1988
); 
S.
Baaj
, “
Calcul pseudo-différentiel et produits croisés de C*-algébres. II
,”
307
,
663
666
(
1988
).
43.
H.
Ha
,
G.
Lee
, and
R.
Ponge
, “
Pseudodifferential calculus on noncommutative tori. II. Main properties
,”
Int. J. Math.
30
,
1950034
(
2019
).
44.
A.
Connes
and
F.
Fathizadeh
, “
The term a4 in the heat kernel expansion of noncommutative tori
,”
Münster J. Math.
12
,
239
410
(
2019
).
45.
L.
Dabrowski
and
A.
Sitarz
, “
An asymmetric noncommutative torus
,”
SIGMA Symmetry Integrability Geom. Methods Appl.
11
,
075
(
2015
).
46.
R.
Dong
,
A.
Ghorbanpour
, and
M.
Khalkhali
, “
The Ricci curvature for noncommutative three tori
,” arXiv:1808.02977 (
2018
).
47.
B.
Fuglede
and
R. V.
Kadison
, “
Determinant theory in finite factors
,”
Ann. Math.
55
,
520
530
(
1952
).
48.
A.
Connes
and
M.
Marcolli
,
Noncommutative Geometry, Quantum Fields, and Motives
, Colloquium Publications Vol. 55 (
American Mathematical Society
,
2008
).
49.
F.
Fathizadeh
, “
On the scalar curvature for the noncommutative four torus
,”
J. Math. Phys.
56
(
6
),
062303
(
2015
).
50.
M.
Lesch
and
H.
Moscovici
, “
Modular curvature and Morita equivalence
,”
Geom. Funct. Anal.
26
(
3
),
818
873
(
2016
).
51.
F.
Sukochev
and
D.
Zanin
, “
Local invariants of non-commutative tori
,” arXiv:1910.00758.
52.
P. B.
Gilkey
,
Invariance Theory, The Heat Equation, and the Atiyah-Singer Index Theorem
, 2nd ed., Studies in Advanced Mathematics (
CRC Press
,
Boca Raton, FL
,
1995
).
53.
G.
Grubb
and
R. T.
Seeley
, “
Zeta and eta functions for Atiyah-Patodi-Singer operators
,”
J. Geom. Anal.
6
,
31
77
(
1996
).
You do not currently have access to this content.