We derive universal codes for transmission of broadcast and confidential messages over classical-quantum–quantum and fully quantum channels. These codes are robust to channel uncertainties considered in the compound model. To construct these codes, we generalize random codes for transmission of public messages to derive a universal superposition coding for the compound quantum broadcast channel. As an application, we give a multi-letter characterization of regions corresponding to the capacity of the compound quantum broadcast channel for transmitting broadcast and confidential messages simultaneously. This is done for two types of broadcast messages, one called public and the other common.

1.
H.
Boche
,
G.
Janßen
, and
S.
Saeedinaeeni
, “
Simultaneous transmission of classical and quantum information under channel uncertainty and jamming attacks
,”
J. Math. Phys.
60
,
022204
(
2019
).
2.
I.
Devetak
and
P. W.
Shor
, “
The capacity of a quantum channel for simultaneous transmission of classical and quantum information
,”
Commun. Math. Phys.
256
,
287
303
(
2005
).
3.
R.
Ahlswede
, “
Certain results in coding theory for compound channels
,” in
Proceedings of Colloquium on Information Theory, Debrecen, 1967
(
J. Bolyai Mathematical Society
,
Budapest, Hungary
,
1968
), Vol. 1, pp.
35
60
.
4.
R.
Ahlswede
, “
The structure of capacity functions for compound channels
,” in
Proceedings of the International Symposium on Probability and Information Theory at McMaster University, Canada 12-54
(
Springer
,
1969
).
5.
I.
Bjelaković
,
H.
Boche
,
G.
Janßen
, and
J.
Nötzel
, “
Arbitrarily varying and compound classical-quantum channels and a note on quantum zero-error capacities
,”
Information Theory, Combinatorics, and Search Theory: In Memory of Rudolf Ahlswede
, edited by
H.
Aydinian
,
F.
Cicalese
, and
C.
Deppe
(
2012
), Vol. 7777, pp.
247
283
.
6.
H.
Boche
,
R. F.
Schaefer
, and
H. V.
Poor
, “
Analytical properties of Shannon’s capacity of arbitrarily varying channels under list decoding: Super-additivity and discontinuity behavior
,”
Probl. Inf. Transm.
54
(
3
),
199
228
(
2018
).
7.
R.
Poor
, in
Transmitting and Gaining data: Rudolf Ahlswede’s Lectures on Information Theory 2
, edited by
R.
Ahlswede
,
I.
Althoefer
,
C.
Deppe
, and
U.
Tamm
(
Springer
,
New York
,
2015
).
8.
R.
Ahlswede
, “
Elimination of correlation in random codes for arbitrarily varying channels
,”
Z. Wahrscheinlichkeitstheorie Verw. Geb.
44
,
159
175
(
1978
).
9.
R. F.
Schaefer
and
H.
Boche
, “
Robust broadcasting of common and confidential messages over compound channels: Strong secrecy and decoding performance
,”
IEEE Trans. Inf. Forensics Secur.
9
(
10
),
1720
1732
(
2014
).
10.
M.
Mosonyi
, “
Coding theorems for compound problems via quantum Rényi divergences
,”
IEEE Trans. Inf. Theory
61
,
2997
3012
(
2015
).
11.
H.
Boche
,
M.
Cai
,
N.
Cai
, and
C.
Depp
, “
Secrecy capacities of compound quantum wiretap channels and applications
,”
Phys. Rev. A
89
,
052320
(
2014
).
12.
M. M.
Wilde
and
M.-H.
Hsieh
, “
Public and private communication with a quantum channel and secret key
,”
Phys. Rev. A
80
,
022306
(
2009
).
13.
M. M.
Wilde
and
M.-H.
Hsieh
, “
Public and private resource trade-offs for a quantum channel
,”
Quantum Inf. Process.
11
,
1465
1501
(
2012
).
14.
F.
Salek
,
A.
Anshu
,
M.
Hsieh
,
R.
Jain
, and
J. R.
Fonollosa
, “
One-shot capacity bounds on the simultaneous transmission of public and private information over quantum channels
,” in
IEEE International Symposium for Information Theory
(
IEEE
,
2018
), pp.
296
300
.
15.
A.
Anshu
and
V. K.
Devabathini
, “
Quantum communication using coherent rejection sampling
,”
Phys. Rev. Lett.
199
(
12
),
120506
(
2017
).
16.
A.
Anshu
,
R.
Jain
, and
N. A.
Warsi
, “
One shot entanglement assisted classical and quantum communication over noisy quantum channels: A hypothesis testing and convex split approach
,”
IEEE Trans. Inf. Theory
65
,
1287
1306
(
2019
).
17.
A.
Anshu
, “
One-shot protocols for communication over quantum networks: Achievability and limitations
,” Ph.D. thesis,
National University of Singapore
,
2018
.
18.
I.
Csiszár
and
J.
Körner
,
Information Theory, Coding Theorems for Discrete Memoryless Systems
(
Cambridge University Press
,
2011
).
19.
M.
Cai
, “
Classical-quantum channels: Secret message transmission under attacks
,” Ph.D. thesis,
Chair of Theoretical Information Technology, TUM
,
2018
).
20.
R.
Ahlswede
and
A.
Winter
, “
Strong converse for identification via quantum channels
,”
IEEE Trans. Inf. Theory
48
,
569
579
(
2002
).
21.
A.
Anshu
,
R.
Jain
, and
N. A.
Warsi
, “
A hypothesis testing approach for communication over entanglement-assisted compound quantum channel
,”
IEEE Trans. Inf. Theory
65
,
2623
2636
(
2019
).
22.
M. M.
Wilde
,
S.
Khatri
,
E.
Kaur
, and
S.
Guha
, “
Second-order coding rates for key distillation in quantum key distribution
,” arXiv:1910.03993 (
2019
).
23.
M. M.
Wilde
, “
Position- coding and convex splitting for private communication over quantum channels
,”
Quant. Inf. Proc.
16
(
10
),
264
(
2017
).
24.
H.
Boche
,
R. F.
Schaefer
, and
H. V.
Poor
, “
Robust transmission over channels with channel uncertainty: An algorithmic perspective
,” in
Proceedings of International Conference on Acoustics, Speech, and Signal Processing
(
IEEE
,
2020
).
25.
M. M.
Wilde
,
Quantum Information Theory
, 2nd ed. (
Cambridge University Press
,
2017
).
26.
K. M. R.
Audenaert
, “
A sharp Fannes-type inequality for the von Neumann entropy
,”
J. Phys. A: Math. Theor.
40
,
8127
8136
(
2007
).
27.
M. E.
Shirokov
, “
Tight uniform continuity bounds for the quantum conditional mutual information, for the Holevo quantity and for capacities of quantum channels
,”
J. Math. Phys.
58
,
102202
(
2017
).
28.
I.
Bjelaković
and
H.
Boche
, “
Classical capacities of averaged and compound quantum channels
,”
IEEE Trans. Inf. Theory
55
,
3360
3374
(
2007
).
29.
M.
Hayashi
, “
Universal coding for classical-quantum channel
,”
Commun. Math. Phys.
289
,
1087
1098
(
2009
).
30.
N.
Datta
and
M.-H.
Hsieh
, “
Universal coding for transmission of private information
,”
J. Math. Phys.
51
,
122202
(
2010
).
31.
M.
Mosonyi
and
F.
Hiai
, “
On the quantum Rényi relative entropies and related capacity formulas
,”
IEEE Trans. Inf. Theory
57
,
2474
2487
(
2011
).
32.
M.
Hayashi
and
H.
Nagaoka
, “
General formulas for capacity of classical-quantum channels
,”
IEEE Trans. Inf. Theory
49
,
1753
1768
(
2003
).
33.
R.
Bhatia
,
Matrix Analysis
(
Springer-Verlag
,
1997
).
You do not currently have access to this content.