We introduce and study the entanglement breaking rank of an entanglement breaking channel. We show that the entanglement breaking rank of the channel defined by is d2 if and only if there exists a symmetric informationally complete positive operator-valued measure in dimension d.
REFERENCES
1.
L. P.
Hughston
, R.
Jozsa
, and W. K.
Wootters
, “A complete classification of quantum ensembles having a given density matrix
,” Phys. Lett. A
183
(1
), 14
–18
(1993
).2.
D. P.
DiVincenzo
, B. M.
Terhal
, and A. V.
Thapliyal
, “Optimal decompositions of barely separable states
,” J. Mod. Opt.
47
(2-3
), 377
–385
(2000
).3.
L.
Chen
and D. Ž.
Ðoković
, “Dimensions, lengths, and separability in finite-dimensional quantum systems
,” J. Math. Phys.
54
(2
), 022201
(2013
).4.
M.
Horodecki
, P. W.
Shor
, and M. B.
Ruskai
, “Entanglement breaking channels
,” Rev. Math. Phys.
15
(6
), 629
–641
(2003
).5.
P.
Busch
, “Informationally complete sets of physical quantities
,” Int. J. Theor. Phys.
30
(9
), 1217
–1227
(1991
).6.
G. M.
D’Ariano
, P.
Perinotti
, and M. F.
Sacchi
, “Informationally complete measurements and group representation
,” J. Opt. B: Quantum Semiclassical Opt.
6
(6
), S487
–S491
(2004
).7.
G.
Gour
and A.
Kalev
, “Construction of all general symmetric informationally complete measurements
,” J. Phys. A: Math. Theor.
47
(33
), 335302
(2014
).8.
S. G.
Hoggar
, “64 lines from a quaternionic polytope
,” Geom. Dedicata
69
(3
), 287
–289
(1998
).9.
P. W. H.
Lemmens
and J. J.
Seidel
, “Equiangular lines
,” J. Algebra
24
, 494
–512
(1973
).10.
J. M.
Renes
, R.
Blume-Kohout
, A. J.
Scott
, and C. M.
Caves
, “Symmetric informationally complete quantum measurements
,” J. Math. Phys.
45
(6
), 2171
–2180
(2004
).11.
M. B.
Ruskai
, “Qubit entanglement breaking channels
,” Rev. Math. Phys.
15
(6
), 643
–662
(2003
).12.
M.
Grassl
, “Tomography of quantum states in small dimensions
,” in Proceedings of the Workshop on Discrete Tomography and its Applications
(Elsevier
, 2005
), Vol. 20, pp. 151
–164
.13.
A. J.
Scott
and M.
Grassl
, “Symmetric informationally complete positive-operator-valued measures: A new computer study
,” J. Math. Phys.
51
(4
), 042203
(2010
).14.
G.
Zauner
, “Quantendesigns: Grundzüge einer nichtkommutativen designtheorie
,” Ph.D. dissertation (Universität Wien
, 1999
).15.
G.
Zauner
, “Quantum designs: Foundations of a noncommutative design theory
,” Int. J. Quantum Inf.
09
(1
), 445
–507
(2011
).16.
C.
Fuchs
, M.
Hoang
, and B.
Stacey
, “The SIC question: History and state of play
,” Axioms
6
(4
), 21
(2017
).17.
C. M.
Caves
, Symmetric informationally complete POVMs, 1999
, http://info.phys.unm.edu/caves/reports/reports.html.18.
M.
Horodecki
and P.
Horodecki
, “Reduction criterion of separability and limits for a class of distillation protocols
,” Phys. Rev. A
59
, 4206
–4216
(1999
).19.
L.
Lami
and M.
Huber
, “Bipartite depolarizing maps
,” J. Math. Phys.
57
(9
), 092201
(2016
).20.
J.
Watrous
, The Theory of Quantum Information
(Cambridge University Press
, Cambridge
, 2018
).21.
T.
Durt
, B.-G.
Englert
, I.
Bengtsson
, and K.
Życzkowski
, “On mutually unbiased bases
,” Int. J. Quantum Inf.
08
(04
), 535
–640
(2010
).22.
W. M.
Kantor
, “MUBs inequivalence and affine planes
,” J. Math. Phys.
53
(3
), 032204
(2012
).23.
24.
M.-D.
Choi
, “Completely positive linear maps on complex matrices
,” Linear Algebra Appl.
10
, 285
–290
(1975
).25.
M.
Fannes
, B.
Haegeman
, M.
Mosonyi
, and D.
Vanpeteghem
, “Additivity of minimal entropy output for a class of covariant channels
,” arXiv:quant-ph/0410195 (2014
).26.
S.
Bandyopadhyay
, P. O.
Boykin
, V.
Roychowdhury
, and F.
Vatan
, “A new proof for the existence of mutually unbiased bases
,” Algorithmica
34
(4
), 512
–528
(2002
).27.
I. D.
Ivanović
, “Geometrical description of quantal state determination
,” J. Phys. A: Math. Gen.
14
(12
), 3241
–3245
(1981
).28.
W. K.
Wootters
and B. D.
Fields
, “Optimal state-determination by mutually unbiased measurements
,” Ann. Phys.
191
(2
), 363
–381
(1989
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.