We introduce and study the entanglement breaking rank of an entanglement breaking channel. We show that the entanglement breaking rank of the channel Z:MdMd defined by Z(X)=1d+1(X+Tr(X)Id) is d2 if and only if there exists a symmetric informationally complete positive operator-valued measure in dimension d.

1.
L. P.
Hughston
,
R.
Jozsa
, and
W. K.
Wootters
, “
A complete classification of quantum ensembles having a given density matrix
,”
Phys. Lett. A
183
(
1
),
14
18
(
1993
).
2.
D. P.
DiVincenzo
,
B. M.
Terhal
, and
A. V.
Thapliyal
, “
Optimal decompositions of barely separable states
,”
J. Mod. Opt.
47
(
2-3
),
377
385
(
2000
).
3.
L.
Chen
and
D. Ž.
Ðoković
, “
Dimensions, lengths, and separability in finite-dimensional quantum systems
,”
J. Math. Phys.
54
(
2
),
022201
(
2013
).
4.
M.
Horodecki
,
P. W.
Shor
, and
M. B.
Ruskai
, “
Entanglement breaking channels
,”
Rev. Math. Phys.
15
(
6
),
629
641
(
2003
).
5.
P.
Busch
, “
Informationally complete sets of physical quantities
,”
Int. J. Theor. Phys.
30
(
9
),
1217
1227
(
1991
).
6.
G. M.
D’Ariano
,
P.
Perinotti
, and
M. F.
Sacchi
, “
Informationally complete measurements and group representation
,”
J. Opt. B: Quantum Semiclassical Opt.
6
(
6
),
S487
S491
(
2004
).
7.
G.
Gour
and
A.
Kalev
, “
Construction of all general symmetric informationally complete measurements
,”
J. Phys. A: Math. Theor.
47
(
33
),
335302
(
2014
).
8.
S. G.
Hoggar
, “
64 lines from a quaternionic polytope
,”
Geom. Dedicata
69
(
3
),
287
289
(
1998
).
9.
P. W. H.
Lemmens
and
J. J.
Seidel
, “
Equiangular lines
,”
J. Algebra
24
,
494
512
(
1973
).
10.
J. M.
Renes
,
R.
Blume-Kohout
,
A. J.
Scott
, and
C. M.
Caves
, “
Symmetric informationally complete quantum measurements
,”
J. Math. Phys.
45
(
6
),
2171
2180
(
2004
).
11.
M. B.
Ruskai
, “
Qubit entanglement breaking channels
,”
Rev. Math. Phys.
15
(
6
),
643
662
(
2003
).
12.
M.
Grassl
, “
Tomography of quantum states in small dimensions
,” in
Proceedings of the Workshop on Discrete Tomography and its Applications
(
Elsevier
,
2005
), Vol. 20, pp.
151
164
.
13.
A. J.
Scott
and
M.
Grassl
, “
Symmetric informationally complete positive-operator-valued measures: A new computer study
,”
J. Math. Phys.
51
(
4
),
042203
(
2010
).
14.
G.
Zauner
, “
Quantendesigns: Grundzüge einer nichtkommutativen designtheorie
,” Ph.D. dissertation (
Universität Wien
,
1999
).
15.
G.
Zauner
, “
Quantum designs: Foundations of a noncommutative design theory
,”
Int. J. Quantum Inf.
09
(
1
),
445
507
(
2011
).
16.
C.
Fuchs
,
M.
Hoang
, and
B.
Stacey
, “
The SIC question: History and state of play
,”
Axioms
6
(
4
),
21
(
2017
).
17.
C. M.
Caves
, Symmetric informationally complete POVMs,
1999
, http://info.phys.unm.edu/caves/reports/reports.html.
18.
M.
Horodecki
and
P.
Horodecki
, “
Reduction criterion of separability and limits for a class of distillation protocols
,”
Phys. Rev. A
59
,
4206
4216
(
1999
).
19.
L.
Lami
and
M.
Huber
, “
Bipartite depolarizing maps
,”
J. Math. Phys.
57
(
9
),
092201
(
2016
).
20.
J.
Watrous
,
The Theory of Quantum Information
(
Cambridge University Press
,
Cambridge
,
2018
).
21.
T.
Durt
,
B.-G.
Englert
,
I.
Bengtsson
, and
K.
Życzkowski
, “
On mutually unbiased bases
,”
Int. J. Quantum Inf.
08
(
04
),
535
640
(
2010
).
22.
W. M.
Kantor
, “
MUBs inequivalence and affine planes
,”
J. Math. Phys.
53
(
3
),
032204
(
2012
).
23.
A. J.
Scott
, “
SICs: Extending the list of solutions
,” arXiv:1703.03993 (
2017
).
24.
M.-D.
Choi
, “
Completely positive linear maps on complex matrices
,”
Linear Algebra Appl.
10
,
285
290
(
1975
).
25.
M.
Fannes
,
B.
Haegeman
,
M.
Mosonyi
, and
D.
Vanpeteghem
, “
Additivity of minimal entropy output for a class of covariant channels
,” arXiv:quant-ph/0410195 (
2014
).
26.
S.
Bandyopadhyay
,
P. O.
Boykin
,
V.
Roychowdhury
, and
F.
Vatan
, “
A new proof for the existence of mutually unbiased bases
,”
Algorithmica
34
(
4
),
512
528
(
2002
).
27.
I. D.
Ivanović
, “
Geometrical description of quantal state determination
,”
J. Phys. A: Math. Gen.
14
(
12
),
3241
3245
(
1981
).
28.
W. K.
Wootters
and
B. D.
Fields
, “
Optimal state-determination by mutually unbiased measurements
,”
Ann. Phys.
191
(
2
),
363
381
(
1989
).
You do not currently have access to this content.