We study six natural decompositions of mixed states in one spatial dimension: the matrix product density operator form, the local purification form, the separable decomposition (for separable states), and their three translational invariant analogs. For bipartite states diagonal in the computational basis, we show that these decompositions correspond to well-studied factorizations of an associated nonnegative matrix. Specifically, the first three decompositions correspond to the minimal factorization, the nonnegative factorization, and the positive semidefinite factorization. We also show that a symmetric version of these decompositions corresponds to the symmetric factorization, the completely positive factorization, and the completely positive semidefinite transposed factorization. We leverage this correspondence to characterize the six decompositions of mixed states.

1.
R.
Orús
, “
Tensor networks for complex systems
,”
Nat. Rev. Phys.
1
,
538
(
2019
).
2.
G.
De las Cuevas
,
N.
Schuch
,
D.
Pérez-García
, and
J.
Ignacio Cirac
, “
Purifications of multipartite states: Limitations and constructive methods
,”
New J. Phys.
15
,
123021
(
2013
).
3.

That is, entrywise nonnegative. A Hermitian matrix with nonnegative eigenvalues is called positive semidefinite.

4.
G.
De las Cuevas
,
T.
Drescher
, and
T.
Netzer
, “
Separability for mixed states with operator Schmidt rank two
,”
Quantum
3
,
203
(
2019
); arXiv:1903.05373.
5.

Everything is finite-dimensional in our discussion.

6.
F.
Verstraete
,
J. J.
Garcia-Ripoll
, and
J. I.
Cirac
, “
Matrix product density operators: Simulation of finite-temperature and dissipative systems
,”
Phys. Rev. Lett.
93
,
207204
(
2004
).
7.
M.
Zwolak
and
G.
Vidal
, “
Mixed-state dynamics in one-dimensional quantum lattice systems: A time-dependent superoperator renormalization algorithm
,”
Phys. Rev. Lett.
93
,
207205
(
2004
).
8.
D.
Perez-Garcia
,
F.
Verstraete
,
M. M.
Wolf
, and
J. I.
Cirac
, “
Matrix product state representations
,”
Quantum Inf. Comput.
7
,
401
(
2007
); available at http://www.rintonpress.com/xqic7/qic-7-56/401-430.pdf.
9.
M.
Fannes
,
B.
Nachtergaele
, and
R. F.
Werner
, “
Finitely correlated states on quantum spin chains
,”
Commun. Math. Phys.
144
,
443
(
1992
).
10.
G.
De las Cuevas
,
J. I.
Cirac
,
N.
Schuch
, and
D.
Perez-Garcia
, “
Irreducible forms for matrix product states: Theory and applications
,”
J. Math. Phys.
58
,
121901
(
2017
).
11.
N.
Schuch
,
I.
Cirac
, and
D.
Pérez-García
, “
PEPS as ground states: Degeneracy and topology
,”
Ann. Phys.
325
,
2153
(
2010
).
12.
G.
De las Cuevas
,
N.
Schuch
,
D.
Perez-Garcia
, and
J. I.
Cirac
, “
Continuum limits of matrix product states
,”
Phys. Rev. B
98
,
174303
(
2018
).
13.
R.
Jain
,
Y.
Shi
,
Z.
Wei
, and
S.
Zhang
, “
Efficient protocols for generating bipartite classical distributions and quantum states
,”
IEEE Trans. Inf. Theory
59
,
5171
(
2013
).
14.
R.
Jain
,
Z.
Wei
,
P.
Yao
, and
S.
Zhang
, “
Multipartite quantum correlation and communication complexities
,”
Comput. Complexity
26
,
199
(
2017
); arXiv:1405.6015v1.
15.
M.
Sanz
,
D.
Perez-Garcia
,
M. M.
Wolf
, and
J. I.
Cirac
, “
A quantum version of Wielandt’s inequality
,”
IEEE Tran. Inf. Theory
56
,
4668
(
2010
).
16.
M.
Michałek
and
Y.
Shitov
, “
Quantum version of Wielandt’s inequality revisited
,” arXiv:1809.04387 (
2018
).
17.
G.
De las Cuevas
,
T. S.
Cubitt
,
J. I.
Cirac
,
M. M.
Wolf
, and
D.
Pérez-García
, “
Fundamental limitations in the purifications of tensor networks
,”
J. Math. Phys.
57
,
071902
(
2016
).
18.
P.
Comon
,
G.
Golub
,
L.-H.
Lim
, and
B.
Mourrain
, “
Symmetric tensors and symmetric tensor rank
,”
SIAM J. Matrix Anal. Appl.
30
,
1254
(
2008
).
19.
M.
Yannakakis
, “
Expressing combinatorial optimization problems by linear programs
,”
J. Comput. Syst. Sci.
43
,
441
(
1991
).
20.
S.
Fiorini
,
S.
Massar
,
S.
Pokutta
,
H. R.
Tiwary
, and
R.
de Wolf
, “
Linear vs. Semidefinite extended formulations: Exponential separation and strong lower bounds
,” in Proceedings of the 44th Symposium on Theory of Computing STOC ’12, (
2012
), Vol. 95.
21.
H.
Fawzi
,
J.
Gouveia
,
P. A.
Parrilo
,
R. Z.
Robinson
, and
R. R.
Thomas
, “
Positive semidefinite rank
,”
Math. Program.
153
,
133
(
2015
).
22.
P. M.
Cohn
,
Algebra
, 2nd ed. (
John Wiley & Sons, Ltd.
,
1982
), Vol. 1.
23.
A.
Berman
,
M.
Dur
, and
N.
Shaked-Monderer
, “
Open problems in the theory of completely positive and copositive matrices
,”
Electron. J. Linear Algebra
29
,
46
(
2015
).
24.
M.
Laurent
and
T.
Piovesan
, “
Conic approach to quantum graph parameters using linear optimization over the completely positive semidefinite cone
,”
SIAM J. Optim.
25
,
2461
(
2015
).
25.
S.
Wehner
,
M.
Christandl
, and
A. C.
Doherty
, “
A lower bound on the dimension of a quantum system given measured data
,”
Phys. Rev. A
78
,
062112
(
2008
).
26.
G.
De las Cuevas
,
M.
Hoogsteder Riera
, and
T.
Netzer
, “
Tensor decompositions on simplicial complexes with invariance
,” arXiv:1909.01737 (
2019
).
27.

The dual is defined by tr(YT(X))=tr(T(Y)X).

28.
J.
Sikora
and
A.
Varvitsiotis
, “
Linear conic formulations for two-party correlations and values of nonlocal games
,”
Math. Program.
162
,
431
(
2017
).
29.
J.
Gouveia
,
P. A.
Parrilo
, and
R. R.
Thomas
, “
Lifts of convex sets and cone factorizations
,”
Math. Oper. Res.
38
,
248
(
2013
).
30.
B. M.
Terhal
,
M.
Horodecki
,
D. W.
Leung
, and
D. P.
DiVincenzo
, “
The entanglement of purification
,”
J. Math. Phys.
43
,
4286
(
2002
).
31.
M.
Kliesch
,
D.
Gross
, and
J.
Eisert
, “
Matrix product operators and states: NP-hardness and undecidability
,”
Phys. Rev. Lett.
113
,
160503
(
2014
).
32.
G.
Scarpa
,
A.
Molnar
,
Y.
Ge
,
J. J.
Garcia-Ripoll
,
N.
Schuch
,
D.
Perez-Garcia
, and
S.
Iblisdir
, “
Computational complexity of PEPS zero testing
,” arXiv:1802.08214 (
2018
).
33.
I.
Glasser
,
R.
Sweke
,
N.
Pancotti
,
J.
Eisert
, and
J. I.
Cirac
, “
Expressive power of tensor-network factorizations for probabilistic modeling, with applications from hidden Markov models to quantum machine learning
,” in
Proceedings of the NeurIPS 2019 Conference
, (
2019
), p.
32
; arXiv:1907.03741.
34.
A.
Berman
and
N.
Shaked-Monderer
,
Completely Positive Matrices
(
World Scientific
,
2003
).
35.
H.
Fawzi
and
P. A.
Parrilo
, “
Self-scaled bounds for atomic cone ranks: Applications to nonnegative rank and cp-rank
,”
Math. Program.
158
,
417
(
2016
).
36.
S.
Gribling
,
D.
de Laat
, and
M.
Laurent
, “
Lower bounds on matrix factorization ranks via noncommutative polynomial optimization
,” arXiv:1708.01573 (
2017
).
37.
Y.
Shitov
, “
The complexity of positive semidefinite matrix factorization
,”
SIAM J. Optim.
27
,
1898
(
2017
).
38.
W.
Slofstra
, “
The set of quantum correlations is not closed
,” arXiv:1703.08618.
39.
G.
De las Cuevas
,
A.
Klingler
, and
T.
Netzer
, “
Approximate tensor decompositions: Disappearance of all separations
” (unpublished) (
2020
).
40.
N. J.
Higham
,
Functions of Matrices
(
SIAM
,
Philadelphia
,
2008
).
You do not currently have access to this content.