The universal Askey–Wilson algebra AW(3) can be obtained as the commutant of Uq(su(1,1)) in Uq(su(1,1))3. We analyze the commutant of oq1/2(2)oq1/2(2)oq1/2(2) in q-oscillator representations of oq1/2(6) and show that it also realizes AW(3). These two pictures of AW(3) are shown to be dual in the sense of Howe; this is made clear by highlighting the role of the intermediate Casimir elements of each member of the dual pair Uq(su(1,1)),oq1/2(6). We also generalize these results. A higher rank extension of the Askey–Wilson algebra denoted AW(n) can be defined as the commutant of Uq(su(1,1)) in Uq(su(1,1))n, and a dual description of AW(n) as the commutant of oq1/2(2)n in q-oscillator representations of oq1/2(2n) is offered by calling upon the dual pair Uq(su(1,1)),oq1/2(2n).

1.
A. S.
Zhedanov
, “
“Hidden symmetry” of Askey-Wilson polynomials
,”
Theor. Math. Phys.
89
,
1146
1157
(
1991
).
2.
P.
Baseilhac
, “
Deformed Dolan-Grady relations in quantum integrable models
,”
Nucl. Phys. B
709
,
491
521
(
2005
); e-print arXiv:0404149v3 [hep-th].
3.
B.
Aneva
, “
Tridiagonal symmetries of models of nonequilibrium physics
,”
Symmetry, Integrability Geom.: Methods Appl.
4
,
056
(
2008
); e-print arXiv:0807.4391.
4.
L.
Vinet
and
A.
Zhedanov
, “
Quasi-linear algebras and integrability (the Heisenberg picture)
,”
Symmetry, Integrability Geom.: Methods Appl.
4
,
015
(
2008
); e-print arXiv:0802.0744.
5.
P.
Baseilhac
, “
An integrable structure related with tridiagonal algebras
,”
Nucl. Phys. B
705
,
605
619
(
2005
); e-print arXiv:0408025 [math-ph].
6.
P.
Baseilhac
and
K.
Koizumi
, “
A new (in)finite-dimensional algebra for quantum integrable models
,”
Nucl. Phys. B
720
,
325
347
(
2005
); e-print arXiv:0503036 [math-ph].
7.
P.
Terwilliger
and
R.
Vidunas
, “
Leonard pairs and the Askey-Wilson relations
,”
J. Algebra Appl.
03
,
411
426
(
2005
); e-print arXiv:0305356 [math].
8.
P.
Terwilliger
, “
The universal Askey-Wilson algebra
,”
Symmetry, Integrability Geom.: Methods Appl.
7
,
069
(
2011
); e-print arXiv:1104.2813.
9.
P.
Terwilliger
, “
The universal Askey-Wilson algebra and DAHA of type (C1,C1)
,”
Symmetry, Integrability Geom.: Methods Appl.
9
,
047
(
2013
); e-print arXiv:1202.4673.
10.
P.
Terwilliger
, “
The q-Onsager algebra and the universal Askey–Wilson algebra
,”
Symmetry, Integrability Geom.: Methods Appl.
14
,
044
(
2018
); e-print arXiv:1801.06083.
11.
D.
Bullock
and
J. H.
Przytycki
, “
Multiplicative structure of Kauffman bracket skein module quantizations
,”
Proc. Am. Math. Soc.
128
,
923
931
(
1999
); e-print arXiv:9902117 [math].
12.
T. H.
Koornwinder
, “
The relationship between Zhedanov’s algebra AW(3) and the double affine Hecke algebra in the rank one case
,”
Symmetry, Integrability Geom.: Methods Appl.
3
,
063
(
2006
); e-print arXiv:0612730 [math].
13.
T. H.
Koornwinder
, “
Zhedanov’s algebra AW(3) and the double affine Hecke algebra in the rank one case. II. The spherical subalgebra
,”
Symmetry, Integrability Geom.: Methods Appl.
4
,
052
(
2008
); e-print arXiv:0711.2320v3.
14.
M.
Mazzocco
, “
Confluences of the Painlevé equations, Cherednik algebras and q-Askey scheme
,”
Nonlinearity
29
,
2565
2608
(
2016
); e-print arXiv:1307.6140.
15.
Y. A.
Granovskii
and
A.
Zhedanov
, “
Hidden symmetry of the Racah and Clebsch-Gordan problems for the quantum algebra slq(2)
,”
J. Group Theory Phys.
1
,
161
171
(
1993
); e-print arXiv:9304138 [hep-th].
16.
H. W.
Huang
, “
An embedding of the universal Askey-Wilson algebra into Uq(sl2) ⊗ Uq(sl2) ⊗ Uq(sl2)
,”
Nucl. Phys. B
922
,
401
434
(
2017
); e-print arXiv:1611.02130.
17.
R.
Howe
, “
Remarks on classical invariant theory
,”
Trans. Am. Math. Soc.
313
,
539
570
(
1989
).
18.
R.
Howe
, “
Transcending classical invariant theory
,”
J. Am. Math. Soc.
2
,
535
552
(
1989
).
19.
R.
Howe
, “
Dual pairs in physics: Harmonic oscillators, photons, electrons, singletons
,” in
Proceedings of the Applications of Group Theory in Physics and Mathematical Physics
, edited by
M.
Flato
,
P.
Sally
, and
G.
Zuckerman
(
AMS
,
Chicago
,
1987
), Chap. 6, pp.
179
206
.
20.
M.
Moshinsky
and
C.
Quesne
, “
Linear canonical transformations and their unitary representations
,”
J. Math. Phys.
12
,
1772
1780
(
1971
).
21.
H. P.
Jakobsen
and
M.
Vergne
, “
Wave and Dirac operators, and representations of the conformal group
,”
J. Funct. Anal.
24
,
52
106
(
1977
).
22.
D. J.
Rowe
,
J.
Repka
, and
M. J.
Carvalho
, “
Simple unified proofs of four duality theorems
,”
J. Math. Phys.
52
,
013507
(
2011
).
23.
D. J.
Rowe
,
M. J.
Carvalho
, and
J.
Repka
, “
Dual pairing of symmetry and dynamical groups in physics
,”
Rev. Mod. Phys.
84
,
711
757
(
2012
); e-print arXiv:1207.0148.
24.
J.
Gaboriaud
,
L.
Vinet
,
S.
Vinet
, and
A.
Zhedanov
, “
The Racah algebra as a commutant and Howe duality
,”
J. Phys. A: Math. Theor.
51
,
50LT01
(
2018
); e-print arXiv:1808.05261.
25.
J.
Gaboriaud
,
L.
Vinet
,
S.
Vinet
, and
A.
Zhedanov
, “
The generalized Racah algebra as a commutant
,”
J. Phys.: Conf. Ser.
1194
,
012034
(
2019
); e-print arXiv:1808.09518v1.
26.
M.
Noumi
,
T.
Umeda
, and
M.
Wakayama
, “
Dual pairs, spherical harmonics and a Capelli identity in quantum group theory
,”
Compos. Math.
104
,
227
277
(
1996
).
27.
A.
Klimyk
and
K.
Schmüdgen
,
Quantum Groups and Their Representations
(
Springer-Verlag Berlin Heidelberg
,
1997
), p.
552
.
28.
A. M.
Gavrilik
and
N. Z.
Iorgov
, “
On Casimir elements of q-algebras Uq(son) and their eigenvalues in representations
,”
Proc. Inst. Math. NAS Ukraine
30
,
310
314
(
2000
); e-print arXiv:9911201 [math].
29.
A. U.
Klimyk
, “
The nonstandard q-deformation of enveloping algebra U(son): Results and problems
,”
Czech. J. Phys.
51
,
331
340
(
2001
).
30.
A. U.
Klimyk
, “
On classification of irreducible representations of q-deformed algebra Uq(son) related to quantum gravity
,”
Proc. Inst. Math. NAS Ukraine
43
,
407
418
(
2002
) [math].
31.
N. Z.
Iorgov
and
A. U.
Klimyk
, “
Classification theorem on irreducible representations of the q-deformed algebra Uq(son)
,”
Int. J. Math. Math. Sci.
2005
(
2
),
225
262
; e-print arXiv:0702482 [math].
32.
M.
Noumi
, “
Macdonald’s symmetric polynomials as zonal spherical functions on some quantum homogeneous spaces
,”
Adv. Math.
123
,
16
77
(
1996
); e-print arXiv:9503224 [math].
33.
G.
Letzter
, “
Coideal subalgebras and quantum symmetric pairs
,” in
New Directions in Hopf Algebras
, edited by
S.
Montgomery
and
H.-J.
Schneider
(
MSRI Publications
,
Cambridge
,
2002
), pp.
117
165
; e-print arXiv:0103228 [math].
34.
C.
Itzykson
, “
Remarks on boson commutation rules
,”
Commun. Math. Phys.
4
,
92
122
(
1967
).
35.
M.
Feigin
and
T.
Hakobyan
, “
On Dunkl angular momenta algebra
,”
J. High Energy Phys.
2015
,
107
; e-print arXiv:1409.2480.
36.
H.
De Bie
,
V. X.
Genest
,
W.
van de Vijver
, and
L.
Vinet
, “
A higher rank Racah algebra and the Z2n Laplace-Dunkl operator
,”
J. Phys. A: Math. Theor.
51
,
025203
(
2017
); e-print arXiv:1610.02638.
37.
S.
Post
and
A.
Walter
, “
A higher rank extension of the Askey-Wilson algebra
,” e-print arXiv:1705.01860v2 (
2017
).
38.
H.
De Bie
,
H.
De Clercq
, and
W.
Van De Vijver
, “
The higher rank q-deformed Bannai-Ito and Askey-Wilson algebra
,”
Commun. Math. Phys.
374
,
277
316
(
2020
).
39.
E. G.
Kalnins
,
W.
Miller
, and
S.
Post
, “
Wilson polynomials and the generic superintegrable system on the 2-sphere
,”
J. Phys. A: Math. Theor.
40
,
11525
11538
(
2007
).
40.
P.
Iliev
, “
The generic quantum superintegrable system on the sphere and Racah operators
,”
Lett. Math. Phys.
107
,
2029
2045
(
2017
); e-print arXiv:1608.04590.
41.
J.
Gaboriaud
,
L.
Vinet
,
S.
Vinet
, and
A.
Zhedanov
, “
The dual pair Pin(2n)osp(1|2), the Dirac equation and the Bannai–Ito algebra
,”
Nucl. Phys. B
937
,
226
239
(
2018
); e-print arXiv:1810.00130.
You do not currently have access to this content.