We consider a planar Coulomb gas in which the external potential is generated by a smeared uniform background of opposite-sign charge on a disk. This model can be seen as a two-dimensional Wigner jellium, not necessarily charge-neutral, and with particles allowed to exist beyond the support of the smeared charge. The full space integrability condition requires a low enough temperature or high enough total smeared charge. This condition does not allow, at the same time, total charge-neutrality and determinantal structure. The model shares similarities with both the complex Ginibre ensemble and the Forrester–Krishnapur spherical ensemble of random matrix theory. In particular, for a certain regime of temperature and total charge, the equilibrium measure is uniform on a disk as in the Ginibre ensemble, while the modulus of the farthest particle has heavy-tailed fluctuations as in the Forrester–Krishnapur spherical ensemble. We also touch upon a higher temperature regime producing a crossover equilibrium measure, as well as a transition to Gumbel edge fluctuations. More results in the same spirit on edge fluctuations are explored by the second author together with Raphael Butez.

1.
E.
Wigner
, “
Effects of the electron interaction on the energy levels of electrons in metals
,”
Trans. Faraday Soc.
34
,
678
685
(
1938
).
2.
E.
Wigner
,
Log-gases and Random Matrices
, London Mathematical Society Monographs Series Vol. 34 (
Princeton University Press
,
Princeton, NJ
,
2010
).
3.
D.
Chafaï
and
S.
Péché
, “
A note on the second order universality at the edge of Coulomb gases on the plane
,”
J. Stat. Phys.
156
(
2
),
368
383
(
2014
).
4.
R.
Butez
and
D.
Garcia-Zelada
, “
Extremal particles of two-dimensional Coulomb gases and random polynomials on a positive background
,” arXiv:1811.12225v1 (
2018
).
5.
H.
Hedenmalm
and
A.
Wennman
, “
Off-spectral analysis of Bergman kernels
,”
Commun. Math. Phys.
373
,
1049
1083
(
2020
).
6.
E.
Kostlan
, “
On the spectra of Gaussian matrices
,”
162-164
,
385
388
(
1992
);
F.
Uhlig
,
T.-Y.
Tam
, and
D.
Carlson
, “
Directions in matrix theory, Auburn 1990, conference report
,”
Linear Algebra Appl.
ibid.
162-164
,
711
797
(
1992
).
7.
D.
García-Zelada
, “
Edge fluctuations for a class of two-dimensional determinantal Coulomb gases
,” arXiv:1812.11170v1 (
2018
).
8.
D.
Chafaï
and
G.
Ferré
, “
Simulating Coulomb and log-gases with hybrid Monte Carlo algorithms
,”
J. Stat. Phys.
174
(
3
),
692
714
(
2019
).
9.
A.
Dhar
,
A.
Kundu
,
S. N.
Majumdar
,
S.
Sabhapandit
, and
G.
Schehr
, “
Exact extremal statistics in the classical 1D coulomb gas
,”
Phys. Rev. Lett.
119
,
060601
(
2017
).
10.
A.
Dhar
,
A.
Kundu
,
S. N.
Majumdar
,
S.
Sabhapandit
, and
G.
Schehr
, “
Extreme statistics and index distribution in the classical 1d Coulomb gas
,”
J. Phys. A: Math. Theor.
51
(
29
),
295001
(
2018
).
11.
A.
Dhar
,
A.
Kundu
,
S. N.
Majumdar
,
S.
Sabhapandit
, and
G.
Schehr
, “
Exact extremal statistics in the classical 1d Coulomb gas
,”
Phys. Rev. Lett.
119
(
6
),
060601
(
2017
); see the supplemental material.
12.
C.
Bordenave
and
D.
Chafaï
, “
Around the circular law
,”
Probab. Surv.
9
,
1
89
(
2012
).
13.
L. L.
Helms
,
Potential Theory
, 2nd ed., Universitext (
Springer
,
London
,
2014
).
14.
N. S.
Landkof
,
Foundations of Modern Potential Theory
(
Springer-Verlag
,
New York, Heidelberg
,
1972
), Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180.
15.
E. H.
Lieb
and
M.
Loss
,
Analysis
, 2nd ed., Graduate Studies in Mathematics Vol. 14 (
American Mathematical Society
,
Providence, RI
,
2001
).
16.
G. W.
Anderson
,
A.
Guionnet
, and
O.
Zeitouni
,
An Introduction to Random Matrices
, Cambridge Studies in Advanced Mathematics Vol. 118 (
Cambridge University Press
,
Cambridge
,
2010
).
17.
D.
Chafaï
,
N.
Gozlan
, and
P.-A.
Zitt
, “
First-order global asymptotics for confined particles with singular pair repulsion
,”
Ann. Appl. Probab.
24
(
6
),
2371
2413
(
2014
).
18.
D.
García-Zelada
, “
A large deviation principle for empirical measures on Polish spaces: Application to singular Gibbs measures on manifolds
,”
Ann. Inst. H. Poincaré Probab. Statist.
55
,
1377
1401
,
(
2019
); arXiv:1703.02680v3.
19.
A.
Hardy
, “
A note on large deviations for 2D Coulomb gas with weakly confining potential
,”
Electron. Commun. Probab.
17
,
12
(
2012
).
20.
F.
Hiai
and
D.
Petz
,
The Semicircle Law, Free Random Variables and Entropy
, Mathematical Surveys and Monographs Vol. 77 (
American Mathematical Society
,
Providence, RI
,
2000
).
21.
D.
Petz
and
F.
Hiai
, “
Logarithmic energy as an entropy functional
,” in
Advances in Differential Equations and Mathematical Physics
(Atlanta, GA, 1997), Contemporary Mathematics Vol. 217 (
American Mathematical Society
,
Providence, RI
,
1998
), pp.
205
221
.
22.
G.
Akemann
and
S.-S.
Byun
, “
The high temperature crossover for general 2D Coulomb gases
,”
J. Stat. Phys.
175
(
6
),
1043
1065
(
2019
)
23.
R. J.
Berman
, “
Kähler–Einstein metrics emerging from free fermions and statistical mechanics
,”
J. High Energy Phys.
2011
(
10
),
106
.
24.
T.
Bodineau
and
A.
Guionnet
, “
About the stationary states of vortex systems
,”
Ann. Inst. H. Poincaré Probab. Statist.
35
(
2
),
205
237
(
1999
).
25.
E.
Caglioti
,
P. L.
Lions
,
C.
Marchioro
, and
M.
Pulvirenti
, “
A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description
,”
Commun. Math. Phys.
143
(
3
),
501
525
(
1992
).
26.
P.
Dupuis
,
V.
Laschos
, and
K.
Ramanan
, “
Large deviations for configurations generated by Gibbs distributions with energy functionals consisting of singular interaction and weakly confining potentials
,” arXiv:1511.06928v4 (
2020
).
27.
J. E.
Yukich
,
Probability Theory of Classical Euclidean Optimization Problems
, Lecture Notes in Mathematics Vol. 1675 (
Springer-Verlag
,
Berlin
,
1998
).
28.
P. J.
Forrester
and
M.
Krishnapu
, “
Derivation of an eigenvalue probability density function relating to the Poincaré disk
,”
J. Phys. A: Math. Theor.
42
(
38
),
385204
(
2009
).
29.
J.
Ginibre
, “
Statistical ensembles of complex, quaternion, and real matrices
,”
J. Math. Phys.
6
,
440
449
(
1965
).
30.
J. B.
Hough
,
M.
Krishnapur
,
Y.
Peres
, and
B.
Virág
,
Zeros of Gaussian Analytic Functions and Determinantal Point Processes
, University Lecture Series Vol. 51 (
American Mathematical Society
,
Providence, RI
,
2009
).
31.
M.
Krishnapur
, “
From random matrices to random analytic functions
,”
Ann. Probab.
37
(
1
),
314
346
(
2009
).
32.
S.
Serfaty
,
Coulomb Gases and Ginzburg-Landau Vortices
, Zurich Lectures in Advanced Mathematics (
European Mathematical Society (EMS)
,
Zürich
,
2015
).
33.
S.
Serfaty
, “
Systems of points with Coulomb interactions
,”
EMS Newsl.
2018
(
110
),
16
21
.
34.
R. B.
Laughlin
, “
Elementary theory: The incompressible quantum fluid
,” in
The Quantum Hall Effect
, edited by
R. E.
Prange
and
S. M.
Girvin
(
Springer
,
1987
), pp.
233
301
.
35.
B.
Lacroix-A-Chez-Toine
,
S. N.
Majumdar
, and
G.
Schehr
, “
Rotating trapped fermions in two dimensions and the complex ginibre ensemble: Exact results for the entanglement entropy and number variance
,”
Phys. Rev. A
99
,
021602
(
2019
).
36.
Y.
Ameur
,
H.
Hedenmalm
, and
N.
Makarov
, “
Random normal matrices and Ward identities
,”
Ann. Probab.
43
(
3
),
1157
1201
(
2015
).
37.
M. L.
Mehta
,
Random Matrices
, 2nd ed. (
Academic Press, Inc.
,
Boston, MA
,
1991
).
38.
T.
Jiang
and
Y.
Qi
, “
Spectral radii of large non-Hermitian random matrices
,”
J. Theor. Probab.
30
(
1
),
326
364
(
2017
).
39.
B.
Rider
, “
A limit theorem at the edge of a non-Hermitian random matrix ensemble
,”
J. Phys. A: Math. Theor.
36
(
12
),
3401
3409
(
2003
), Random matrix theory.
40.
B.
Lacroix-A-Chez-Toine
,
A.
Grabsch
,
S. N.
Majumdar
, and
G.
Schehr
, “
Extremes of 2d coulomb gas: Universal intermediate deviation regime
,”
J. Stat. Mech.: Theory Exp.
2018
(
1
),
013203
.
41.
E. B.
Schehr
and
V.
Totik
,
Logarithmic potentials with external fields
, Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences Vol. 316 (
Springer-Verlag
,
Berlin
,
1997
), Appendix B by Thomas Bloom.
42.
Y.
Ameur
, “
A localization theorem for the planar Coulomb gas in an external field
,” arXiv:1907.00923v1 (
2019
).
43.
D.
Chafaï
,
A.
Hardy
, and
M.
Maïda
, “
Concentration for Coulomb gases and Coulomb transport inequalities
,”
J. Funct. Anal.
275
(
6
),
1447
1483
(
2018
).
44.
G. F.
Guiuliani
and
G.
Vignale
,
Quantum Theory of the Electron Liquid
(
Cambridge University Press
,
2008
).
45.
E. H.
Lieb
and
H.
Narnhofer
, “
The thermodynamic limit for jellium
,”
J. Stat. Phys.
12
(
4
),
291
310
(
1975
).
46.
E. H.
Lieb
and
R.
Seiringer
,
The Stability of Matter in Quantum Mechanics
(
Cambridge University Press
,
Cambridge
,
2010
).
47.
M.
Lewin
,
E. H.
Lieb
, and
R.
Seiringer
, “
Statistical mechanics of the uniform electron gas
,”
J. l’École Polytech. Math.
5
,
79
116
(
2018
).
48.
M.
Lewin
,
E. H.
Lieb
, and
R.
Seiringer
, “
A floating Wigner crystal with no boundary charge fluctuations
,” arXiv:1905.09138v1 (
2019
).
49.
R. I. G.
Hughes
, “
Theoretical practice: The Bohm-Pines quartet
,”
Perspect. Sci.
14
(
4
),
457
524
(
2006
).
50.
T.
Can
,
P. J.
Forrester
,
G.
Téllez
, and
P.
Wiegmann
, “
Exact and asymptotic features of the edge density profile for the one component plasma in two dimensions
,”
J. Stat. Phys.
158
(
5
),
1147
1180
(
2015
).
51.
T.
Can
,
P.
Forrester
,
G.
Téllez
, and
P.
Wiegmann
, “
Singular behavior at the edge of Laughlin states
,”
Phys. Rev. B
89
(
23
),
235137
(
2014
).
52.
A.
Gromov
,
K.
Jensen
, and
A. G.
Abanov
, “
Boundary effective action for quantum Hall states
,”
Phys. Rev. Lett.
116
(
12
),
126802
(
2016
).
53.
R. J.
Baxter
, “
Statistical mechanics of a one-dimensional Coulomb system with a uniform charge background
,”
Math. Proc. Cambridge Philos. Soc.
59
(
4
),
779
787
(
1963
).
54.
H.
Kunz
, “
The one-dimensional classical electron gas
,”
Ann. Phys.
85
(
2
),
303
335
(
1974
).
55.
H. J.
Brascamp
and
E. H.
Lieb
, “
Some inequalities for Gaussian measures and the long-range order of the one-dimensional plasma
,” in
Inequalities: Selecta of Elliott H. Lieb
, edited by
M.
Loss
and
M. B.
Ruskai
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2002
), pp.
403
416
.
56.
M.
Aizenman
,
S.
Jansen
, and
P.
Jung
, “
Symmetry breaking in quasi-1D Coulomb systems
,”
Ann. Henri Poincaré
11
(
8
),
1453
1485
(
2010
).
57.
A.
Alastuey
and
B.
Jancovici
, “
On the classical two-dimensional one-component Coulomb plasma
,”
J. Phys. France
42
(
1
),
1
12
(
1981
).
58.
F. D.
Cunden
,
P.
Facchi
,
M.
Ligabò
, and
P.
Vivo
, “
Universality of the third-order phase transition in the constrained Coulomb gas
,”
J. Stat. Mech.: Theory Exp.
2017
(
5
),
053303
.
59.
P. J.
Forrester
, “
Exact results for two-dimensional Coulomb systems
,”
Phys. Rep.
301
(
1
),
235
270
(
1998
).
60.
B.
Jancovici
,
J. L.
Lebowitz
, and
G.
Manificat
, “
Large charge fluctuations in classical Coulomb systems
,”
J. Stat. Phys.
72
(
3
),
773
787
(
1993
).
61.
S.
Jansen
and
P.
Jung
, “
Wigner crystallization in the quantum 1D jellium at all densities
,”
Commun. Math. Phys.
331
(
3
),
1133
1154
(
2014
).
62.
D.
Levesque
,
J.-J.
Weis
, and
J.
Lebowitz
, “
Charge fluctuations in the two-dimensional one-component plasma
,”
J. Stat. Phys.
100
(
1-2
),
209
222
(
2000
).
63.
D.
Chafaï
, Wigner about level spacing and Wishart, blogpost http://djalil.chafai.net/blog/2014/09/26/wigner-about-level-spacing-and-wishart/,
2014
.
64.
O.
Bohigas
and
H. A.
Weidenmüller
, “
History—An overview
,” in
The Oxford Handbook of Random Matrix Theory
(
Oxford University Press
,
Oxford
,
2011
), pp.
15
39
.
65.
F. J.
Dyson
, “
Statistical theory of the energy levels of complex systems. I
,”
J. Math. Phys.
3
(
1
),
140
156
(
1962
).
66.
M. L.
Mehta
and
M.
Gaudin
, “
On the density of eigenvalues of a random matrix
,”
Nucl. Phys.
18
,
420
427
(
1960
).
67.
M. L.
Mehta
and
F. J.
Dyson
, “
Statistical theory of the energy levels of complex systems. V
,”
J. Math. Phys.
4
(
5
),
713
719
(
1963
).
You do not currently have access to this content.