We consider two intimately related statistical mechanical problems on Z3: (i) the tricritical behavior of a model of classical unbounded n-component continuous spins with a triple-well single-spin potential (the |φ|6 model) and (ii) a random walk model of linear polymers with a three-body repulsion and two-body attraction at the tricritical theta point (critical point for the collapse transition), where repulsion and attraction effectively cancel. The polymer model is exactly equivalent to a supersymmetric spin model, which corresponds to the n = 0 version of the |φ|6 model. For the spin and polymer models, we identify the tricritical point and prove that the tricritical two-point function has Gaussian long-distance decay, namely, |x|−1. The proof is based on an extension of a rigorous renormalization group method that has been applied previously to analyze |φ|4 and weakly self-avoiding walk models on Z4.

1.
D. C.
Brydges
and
G.
Slade
, “
A renormalisation group method. V. A single renormalisation group step
,”
J. Stat. Phys.
159
,
589
667
(
2015
).
2.
R.
Bauerschmidt
,
D. C.
Brydges
, and
G.
Slade
, “
Scaling limits and critical behaviour of the 4-dimensional n-component |φ|4 spin model
,”
J. Stat. Phys.
157
,
692
742
(
2014
).
3.
R.
Bauerschmidt
,
D. C.
Brydges
, and
G.
Slade
, “
Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: A renormalisation group analysis
,”
Commun. Math. Phys.
337
,
817
877
(
2015
).
4.
R.
Bauerschmidt
,
D. C.
Brydges
, and
G.
Slade
,
Introduction to a Renormalisation Group Method
, Lecture Notes in Mathematics Vol. 2242 (
Springer
,
Singapore
,
2019
).
5.
G.
Slade
, “
Critical exponents for long-range O(n) models below the upper critical dimension
,”
Commun. Math. Phys.
358
,
343
436
(
2018
).
6.
M.
Lohmann
,
G.
Slade
, and
B. C.
Wallace
, “
Critical two-point function for long-range O(n) models below the upper critical dimension
,”
J. Stat. Phys.
169
,
1132
1161
(
2017
).
7.
B.
Duplantier
, “
Tricritical polymer chains in or below three dimensions
,”
Europhys. Lett.
1
,
491
498
(
1986
).
8.
B.
Duplantier
, “
Geometry of polymer chains near the theta-point and dimensional regularization
,”
J. Chem. Phys.
86
,
4233
4244
(
1987
).
9.
V. F.
Müller
and
J.
Schiemann
, “
Infrared asymptotic freedom of a hierarchical ϕ36 lattice theory
,”
J. Stat. Phys.
43
,
123
142
(
1986
).
10.
G.
Slade
and
A.
Tomberg
, “
Critical correlation functions for the 4-dimensional weakly self-avoiding walk and n-component |φ|4 model
,”
Commun. Math. Phys.
342
,
675
737
(
2016
).
11.
R.
Bauerschmidt
,
D. C.
Brydges
, and
G.
Slade
, “
Critical two-point function of the 4-dimensional weakly self-avoiding walk
,”
Commun. Math. Phys.
338
,
169
193
(
2015
).
12.
D.
Arovas
, “
Lecture notes on thermodynamics and statistical mechanics
” (unpublished) (
2018
), https://courses.physics.ucsd.edu/2017/Spring/physics210a/LECTURES/BOOK_STATMECH.pdf.
13.
C.
Itzykson
and
J.-M.
Drouffe
,
Statistical Field Theory
(
Cambridge University Press
,
Cambridge
,
1989
), Vol. II.
14.
R.
Bauerschmidt
and
G.
Slade
, “
Mean-field tricritical polymers
,” arXiv:1911.00395 (
2019
).
15.
S. E.
Golowich
and
J. Z.
Imbrie
, “
The broken supersymmetry phase of a self-avoiding random walk
,”
Commun. Math. Phys.
168
,
265
319
(
1995
).
16.
M.
Lohmann
, “
Critical exponent for the magnetization of the weakly coupled ϕ44 model
,” arXiv:1810.13138 (
2018
).
17.
K.
Gawȩdzki
and
A.
Kupiainen
, “
Massless lattice φ44 theory: Rigorous control of a renormalizable asymptotically free model
,”
Commun. Math. Phys.
99
,
199
252
(
1985
).
18.
J.
Feldman
,
J.
Magnen
,
V.
Rivasseau
, and
R.
Sénéor
, “
Construction and Borel summability of infrared Φ44 by a phase space expansion
,”
Commun. Math. Phys.
109
,
437
480
(
1987
).
19.
T.
Hara
and
H.
Tasaki
, “
A rigorous control of logarithmic corrections in four dimensional φ4 spin systems. II. Critical behaviour of susceptibility and correlation length
,”
J. Stat. Phys.
47
,
99
121
(
1987
).
20.
M. J.
Stephen
,
E.
Abrahams
, and
J. P.
Straley
, “
Logarithmic corrections to the mean-field theory of tricritical points
,”
Phys. Rev. B
12
,
256
262
(
1975
).
21.
F. J.
Wegner
and
E. K.
Riedel
, “
Logarithmic corrections to the molecular-field behavior of critical and tricritical systems
,”
Phys. Rev. B
7
,
248
256
(
1973
).
22.
D. C.
Brydges
and
G.
Slade
, “
A renormalisation group method. IV. Stability analysis
,”
J. Stat. Phys.
159
,
530
588
(
2015
).
23.
R.
Bauerschmidt
,
D. C.
Brydges
, and
G.
Slade
, “
Structural stability of a dynamical system near a non-hyperbolic fixed point
,”
Ann. Henri Poincaré
16
,
1033
1065
(
2015
).
24.
R.
Bauerschmidt
,
D. C.
Brydges
, and
G.
Slade
, “
A renormalisation group method. III. Perturbative analysis
,”
J. Stat. Phys.
159
,
492
529
(
2015
).
25.
F.
den Hollander
,
Random Polymers
, Lecture Notes in Mathematics Vol. 1974 (
Springer
,
Berlin
,
2009
), Ecole d’Eté de Probabilités de Saint–Flour XXXVII–2007.
26.
D.
Ueltschi
, “
A self-avoiding walk with attractive interactions
,”
Probab. Theory Related Fields
124
,
189
203
(
2002
).
27.
A.
Hammond
and
T.
Helmuth
, “
Self-attracting self-avoiding walk
,”
Probab. Theory Related Fields
175
,
677
719
(
2019
).
28.
R.
Bauerschmidt
,
G.
Slade
, and
B. C.
Wallace
, “
Four-dimensional weakly self-avoiding walk with contact self-attraction
,”
J. Stat. Phys.
167
,
317
350
(
2017
).
29.
R.
van der Hofstad
and
W.
König
, “
A survey of one-dimensional random polymers
,”
J. Stat. Phys.
103
,
915
944
(
2001
).
30.
R.
van der Hofstad
,
A.
Klenke
, and
W.
König
, “
The critical attractive random polymer in dimension one
,”
J. Stat. Phys.
106
,
477
520
(
2002
).
31.
N.
Pétrélis
and
N.
Torri
, “
Collapse transition of the interacting prudent walk
,”
Ann. Inst. Henri Poincaré Comb. Phys. Interact.
5
,
387
435
(
2018
).
32.
N. R.
Beaton
,
A. J.
Guttmann
, and
I.
Jensen
, “
Two-dimensional interacting self-avoiding walks: New estimates for critical temperatures and exponents
,”
J. Phys. A (in press)
(
2019
).
33.
R.
Bauerschmidt
, “
A simple method for finite range decomposition of quadratic forms and Gaussian fields
,”
Probab. Theory Related Fields
157
,
817
845
(
2013
).
34.
D. C.
Brydges
and
G.
Slade
, “
A renormalisation group method. II. Approximation by local polynomials
,”
J. Stat. Phys.
159
,
461
491
(
2015
).
35.
D. C.
Brydges
and
G.
Slade
, “
A renormalisation group method. I. Gaussian integration and normed algebras
,”
J. Stat. Phys.
159
,
421
460
(
2015
).
36.
G. F.
Lawler
,
Intersections of Random Walks
(
Birkhäuser
,
Boston
,
1991
).
37.
D. C.
Brydges
,
G.
Guadagni
, and
P. K.
Mitter
, “
Finite range decomposition of Gaussian processes
,”
J. Stat. Phys.
115
,
415
449
(
2004
).
38.
P. K.
Mitter
and
B.
Scoppola
, “
Renormalization group approach to interacting polymerised manifolds
,”
Commun. Math. Phys.
209
,
207
261
(
2000
).
You do not currently have access to this content.