This paper proposes a class of causal formulations for dissipative relativistic fluid dynamics as a hyperbolic five-field system of second-order partial differential equations. The argumentation continues lines of thinking developed in the author’s earlier papers with Temple and generalizes a four-field description that was recently given by Bemfica, Disconzi, and Noronha [Phys. Rev. D 98, 104064 (2018)] for the case of the pure radiation fluid. The Navier–Stokes–Fourier-like models are constructed as perturbations of auxiliary “involutory augmentations” of the Euler equations and shown to be Hadamard well-posed at least at the level of their linearization.

1.
A.
Lichnerowicz
,
Théories Relativistes de la Gravitation et de l’Électromagnétisme. Relativité Générale et Théories Unitaires
(
Masson et Cie.
,
Paris
,
1955
).
2.
I.
Müller
, “
Zur Ausbreitungsgeschwindigkeit von Störungen in kontinuierlichen Medien
,” Ph.D. dissertation (
TH Aachen
,
1966
).
3.
W.
Israel
, “
Nonstationary irreversible thermodynamics: A causal relativistic theory
,”
Ann. Phys.
100
,
310
331
(
1976
).
4.
J. M.
Stewart
, “
On transient relativistic thermodynamics and kinetic theory
,”
Proc. R. Soc. London, Ser. A
357
,
59
75
(
1977
).
5.
W.
Israel
and
J. M.
Stewart
, “
Transient relativistic thermodynamics and kinetic theory
,”
Ann. Phys.
118
,
341
372
(
1979
).
6.
I.
Liu
,
I.
Müller
, and
T.
Ruggeri
, “
Relativistic thermodynamics of gases
,”
Ann. Phys.
169
,
191
219
(
1986
).
7.
I.
Müller
and
T.
Ruggeri
,
Rational Extended Thermodynamics
, Springer Tracts in Natural Philosophy Vol. 37, 2nd ed. (
Springer-Verlag
,
New York
,
1998
).
8.
R.
Geroch
and
L.
Lindblom
, “
Dissipative relativistic fluid theories of divergence type
,”
Phys. Rev. D
41
,
1855
1861
(
1990
).
9.
Y.
Choquet-Bruhat
,
General Relativity and the Einstein Equations
(
Oxford University Press
,
Oxford
,
2009
).
10.
R.
Baier
,
P.
Romatschke
,
D. T.
Son
,
A. O.
Starinets
, and
M. A.
Stephanov
, “
Relativistic viscous hydrodynamics, conformal invariance, and holography
,”
J. High Energy Phys.
2008
,
100
.
11.
P.
Romatschke
, “
Relativistic viscous fluid dynamics and non-equilibrium entropy
,”
Classical Quantum Gravity
27
,
025006
(
2010
).
12.
P.
Romatschke
, “
New developments in relativistic viscous hydrodynamics
,”
Int. J. Mod. Phys. E
19
,
1
53
(
2010
).
13.
P.
Van
, “
Internal energy in dissipative relativistic fluids
,”
J. Mech. Mater. Struct.
3
,
1161
1169
(
2008
).
14.
P.
Van
and
T.
Biró
, “
Relativistic thermodynamics – causality and stability
,”
Eur. Phys. J.: Spec. Top.
155
,
201
212
(
2008
).
15.
P.
Van
and
T.
Biró
, “
First order and stable relativistic dissipative hydrodynamics
,”
Phys. Lett. B
709
,
106
110
(
2012
).
16.
H.
Niemi
,
G. S.
Denicol
,
P.
Huovinen
,
E.
Molnár
, and
D. H.
Rischke
, “
Influence of shear viscosity of quark-gluon plasma on elliptic flow in ultrarelativistic heavy-ion collisions
,”
Phys. Rev. Lett.
106
,
212302
(
2011
).
17.
G. S.
Denicol
,
T.
Kodama
,
T.
Koide
, and
P.
Mota
, “
Effect of bulk viscosity on elliptic flow near the QCD phase transition
,”
Phys. Rev. C
80
,
064901
(
2009
).
18.
G. S.
Denicol
, “
Kinetic foundations of relativistic dissipative fluid dynamics
,”
J. Phys. G: Nucl. Part. Phys.
41
,
124004
(
2014
).
19.
G. S.
Denicol
,
H.
Niemi
,
E.
Molnár
, and
D. H.
Rischke
, “
Derivation of transient relativistic fluid dynamics from the Boltzmann equation
,”
Phys. Rev. D
85
,
114047
(
2012
).
20.
G. S.
Denicol
,
J.
Noronha
,
H.
Niemi
, and
D. H.
Rischke
, “
Origin of the relaxation time in dissipative fluid dynamics
,”
Phys. Rev. D
83
,
074019
(
2011
).
21.
G. S.
Denicol
,
E.
Molnár
,
H.
Niemi
, and
D. H.
Rischke
, “
Derivation of fluid dynamics from kinetic theory with the 14-moment approximation
,”
Eur. Phys. J. A
48
,
170
(
2012
).
22.
H.
Marrochio
,
J.
Noronha
,
G. S.
Denicol
,
M.
Luzum
,
S.
Jeon
, and
C.
Gale
, “
Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics
,”
Phys. Rev. C
91
,
014903
(
2015
).
23.
F. S.
Bemfica
,
M. M.
Disconzi
, and
J.
Noronha
, “
Causality and existence of solutions of relativistic viscous fluid dynamics with gravity
,”
Phys. Rev. D
98
,
104064
(
2018
).
24.
H.
Freistühler
and
B.
Temple
, “
Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation
,”
Proc. R. Soc. A
470
,
20140055
(
2014
).
25.
H.
Freistühler
and
B.
Temple
, “
Causal dissipation for the relativistic dynamics of ideal gases
,”
Proc. R. Soc. A
473
,
20160729
(
2017
).
26.
S.
Weinberg
,
Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity
(
John Wiley & Sons
,
New York
,
1972
).
27.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon Press
,
London
,
1959
), Sec. 127.
28.
C.
Eckart
, “
The thermodynamics of irreversible processes. 3: Relativistic theory of the simple fluid
,”
Phys. Rev.
58
,
919
924
(
1940
).
29.
W.
Hiscock
and
L.
Lindblom
, “
Stability and causality in dissipative relativistic fluids
,”
Ann. Phys.
151
,
466
496
(
1983
).
30.
H.
Freistühler
and
B.
Temple
, “
Causal dissipation in the relativistic dynamics of barotropic fluids
,”
J. Math. Phys.
59
,
063101
(
2018
).
31.
T.
Hughes
,
T.
Kato
, and
J.
Marsden
, “
Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity
,”
Arch. Ration. Mech. Anal.
63
,
273
294
(
1976
).
32.
M.
Sroczinski
, “
Asymptotic stability of homogeneous states in the relativistic dynamics of viscous, heat-conductive fluids
,”
Arch. Ration. Mech. Anal.
231
,
91
113
(
2019
).
33.
M.
Sroczinski
, “
Asymptotic stability in a second-order symmetric hyperbolic system modeling the relativistic dynamics of viscous heat-conductive fluids with diffusion
,”
J. Differ. Equations
268
,
825
851
(
2020
).
34.
H.
Freistühler
and
M.
Sroczinski
, “
Nonlinear time-asymptotic stability of homogeneous states in the Euler augmented relativistic Navier-Stokes-Fourier system
” (unpublished).
35.
H.
Freistühle
, “
Subluminality and decay of modes in five-field theories of dissipative relativistic fluid dynamics
” (unpublished).
36.
S. K.
Godunov
, “
An interesting class of quasi-linear systems
,”
Dokl. Akad. Nauk SSSR
139
,
521
523
(
1961
).
37.
G.
Boillat
, “
Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systèmes hyperboliques
,”
C. R. Acad. Sci. Paris Sér. A
278
,
909
912
(
1974
).
38.
H.
Freistühler
, “
Relativistic barotropic fluids: A godunov-Boillat formulation for their dynamics and a discussion of two special classes
,”
Arch. Ration. Mech. Anal.
232
,
473
488
(
2019
).
39.
T.
Ruggeri
and
A.
Strumia
, “
Main field and convex covariant density for quasilinear hyperbolic systems. Relativistic fluid dynamics
,”
Ann. Inst. H. Poincaré Sect. A (N.S.)
34
,
65
84
(
1981
).
40.
C.
Cercignani
and
G. M.
Kremer
,
The relativistic Boltzmann Equation: Theory and Applications
, Progress in Mathematical Physics Vol. 22 (
Birkhäuser Verlag
,
Basel
,
2002
).
41.
J.
Leray
,
Hyperbolic Differential Equations
(
The Institute for Advanced Study
,
Princeton, NJ
,
1953
), p.
238
, reprinted November 1955.
42.
J.
Leray
and
Y.
Ohya
, “
Équations et systèmes non-lináires, hyperboliques nonstricts
,”
Math. Ann.
170
,
167
205
(
1967
).
43.
P.-A.
Dionne
, “
Sur les problèmes de Cauchy hyperboliques bien posés
,”
J. Anal. Math.
10
,
1
90
(
1962
).
You do not currently have access to this content.