This paper proposes a class of causal formulations for dissipative relativistic fluid dynamics as a hyperbolic five-field system of second-order partial differential equations. The argumentation continues lines of thinking developed in the author’s earlier papers with Temple and generalizes a four-field description that was recently given by Bemfica, Disconzi, and Noronha [Phys. Rev. D 98, 104064 (2018)] for the case of the pure radiation fluid. The Navier–Stokes–Fourier-like models are constructed as perturbations of auxiliary “involutory augmentations” of the Euler equations and shown to be Hadamard well-posed at least at the level of their linearization.
REFERENCES
1.
A.
Lichnerowicz
, Théories Relativistes de la Gravitation et de l’Électromagnétisme. Relativité Générale et Théories Unitaires
(Masson et Cie.
, Paris
, 1955
).2.
I.
Müller
, “Zur Ausbreitungsgeschwindigkeit von Störungen in kontinuierlichen Medien
,” Ph.D. dissertation (TH Aachen
, 1966
).3.
W.
Israel
, “Nonstationary irreversible thermodynamics: A causal relativistic theory
,” Ann. Phys.
100
, 310
–331
(1976
).4.
J. M.
Stewart
, “On transient relativistic thermodynamics and kinetic theory
,” Proc. R. Soc. London, Ser. A
357
, 59
–75
(1977
).5.
W.
Israel
and J. M.
Stewart
, “Transient relativistic thermodynamics and kinetic theory
,” Ann. Phys.
118
, 341
–372
(1979
).6.
I.
Liu
, I.
Müller
, and T.
Ruggeri
, “Relativistic thermodynamics of gases
,” Ann. Phys.
169
, 191
–219
(1986
).7.
I.
Müller
and T.
Ruggeri
, Rational Extended Thermodynamics
, Springer Tracts in Natural Philosophy Vol. 37, 2nd ed. (Springer-Verlag
, New York
, 1998
).8.
R.
Geroch
and L.
Lindblom
, “Dissipative relativistic fluid theories of divergence type
,” Phys. Rev. D
41
, 1855
–1861
(1990
).9.
Y.
Choquet-Bruhat
, General Relativity and the Einstein Equations
(Oxford University Press
, Oxford
, 2009
).10.
R.
Baier
, P.
Romatschke
, D. T.
Son
, A. O.
Starinets
, and M. A.
Stephanov
, “Relativistic viscous hydrodynamics, conformal invariance, and holography
,” J. High Energy Phys.
2008
, 100
.11.
P.
Romatschke
, “Relativistic viscous fluid dynamics and non-equilibrium entropy
,” Classical Quantum Gravity
27
, 025006
(2010
).12.
P.
Romatschke
, “New developments in relativistic viscous hydrodynamics
,” Int. J. Mod. Phys. E
19
, 1
–53
(2010
).13.
P.
Van
, “Internal energy in dissipative relativistic fluids
,” J. Mech. Mater. Struct.
3
, 1161
–1169
(2008
).14.
P.
Van
and T.
Biró
, “Relativistic thermodynamics – causality and stability
,” Eur. Phys. J.: Spec. Top.
155
, 201
–212
(2008
).15.
P.
Van
and T.
Biró
, “First order and stable relativistic dissipative hydrodynamics
,” Phys. Lett. B
709
, 106
–110
(2012
).16.
H.
Niemi
, G. S.
Denicol
, P.
Huovinen
, E.
Molnár
, and D. H.
Rischke
, “Influence of shear viscosity of quark-gluon plasma on elliptic flow in ultrarelativistic heavy-ion collisions
,” Phys. Rev. Lett.
106
, 212302
(2011
).17.
G. S.
Denicol
, T.
Kodama
, T.
Koide
, and P.
Mota
, “Effect of bulk viscosity on elliptic flow near the QCD phase transition
,” Phys. Rev. C
80
, 064901
(2009
).18.
G. S.
Denicol
, “Kinetic foundations of relativistic dissipative fluid dynamics
,” J. Phys. G: Nucl. Part. Phys.
41
, 124004
(2014
).19.
G. S.
Denicol
, H.
Niemi
, E.
Molnár
, and D. H.
Rischke
, “Derivation of transient relativistic fluid dynamics from the Boltzmann equation
,” Phys. Rev. D
85
, 114047
(2012
).20.
G. S.
Denicol
, J.
Noronha
, H.
Niemi
, and D. H.
Rischke
, “Origin of the relaxation time in dissipative fluid dynamics
,” Phys. Rev. D
83
, 074019
(2011
).21.
G. S.
Denicol
, E.
Molnár
, H.
Niemi
, and D. H.
Rischke
, “Derivation of fluid dynamics from kinetic theory with the 14-moment approximation
,” Eur. Phys. J. A
48
, 170
(2012
).22.
H.
Marrochio
, J.
Noronha
, G. S.
Denicol
, M.
Luzum
, S.
Jeon
, and C.
Gale
, “Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics
,” Phys. Rev. C
91
, 014903
(2015
).23.
F. S.
Bemfica
, M. M.
Disconzi
, and J.
Noronha
, “Causality and existence of solutions of relativistic viscous fluid dynamics with gravity
,” Phys. Rev. D
98
, 104064
(2018
).24.
H.
Freistühler
and B.
Temple
, “Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation
,” Proc. R. Soc. A
470
, 20140055
(2014
).25.
H.
Freistühler
and B.
Temple
, “Causal dissipation for the relativistic dynamics of ideal gases
,” Proc. R. Soc. A
473
, 20160729
(2017
).26.
S.
Weinberg
, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity
(John Wiley & Sons
, New York
, 1972
).27.
L. D.
Landau
and E. M.
Lifshitz
, Fluid Mechanics
(Pergamon Press
, London
, 1959
), Sec. 127.28.
C.
Eckart
, “The thermodynamics of irreversible processes. 3: Relativistic theory of the simple fluid
,” Phys. Rev.
58
, 919
–924
(1940
).29.
W.
Hiscock
and L.
Lindblom
, “Stability and causality in dissipative relativistic fluids
,” Ann. Phys.
151
, 466
–496
(1983
).30.
H.
Freistühler
and B.
Temple
, “Causal dissipation in the relativistic dynamics of barotropic fluids
,” J. Math. Phys.
59
, 063101
(2018
).31.
T.
Hughes
, T.
Kato
, and J.
Marsden
, “Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity
,” Arch. Ration. Mech. Anal.
63
, 273
–294
(1976
).32.
M.
Sroczinski
, “Asymptotic stability of homogeneous states in the relativistic dynamics of viscous, heat-conductive fluids
,” Arch. Ration. Mech. Anal.
231
, 91
–113
(2019
).33.
M.
Sroczinski
, “Asymptotic stability in a second-order symmetric hyperbolic system modeling the relativistic dynamics of viscous heat-conductive fluids with diffusion
,” J. Differ. Equations
268
, 825
–851
(2020
).34.
H.
Freistühler
and M.
Sroczinski
, “Nonlinear time-asymptotic stability of homogeneous states in the Euler augmented relativistic Navier-Stokes-Fourier system
” (unpublished).35.
H.
Freistühle
, “Subluminality and decay of modes in five-field theories of dissipative relativistic fluid dynamics
” (unpublished).36.
S. K.
Godunov
, “An interesting class of quasi-linear systems
,” Dokl. Akad. Nauk SSSR
139
, 521
–523
(1961
).37.
G.
Boillat
, “Sur l’existence et la recherche d’équations de conservation supplémentaires pour les systèmes hyperboliques
,” C. R. Acad. Sci. Paris Sér. A
278
, 909
–912
(1974
).38.
H.
Freistühler
, “Relativistic barotropic fluids: A godunov-Boillat formulation for their dynamics and a discussion of two special classes
,” Arch. Ration. Mech. Anal.
232
, 473
–488
(2019
).39.
T.
Ruggeri
and A.
Strumia
, “Main field and convex covariant density for quasilinear hyperbolic systems. Relativistic fluid dynamics
,” Ann. Inst. H. Poincaré Sect. A (N.S.)
34
, 65
–84
(1981
).40.
C.
Cercignani
and G. M.
Kremer
, The relativistic Boltzmann Equation: Theory and Applications
, Progress in Mathematical Physics Vol. 22 (Birkhäuser Verlag
, Basel
, 2002
).41.
J.
Leray
, Hyperbolic Differential Equations
(The Institute for Advanced Study
, Princeton, NJ
, 1953
), p. 238
, reprinted November 1955.42.
J.
Leray
and Y.
Ohya
, “Équations et systèmes non-lináires, hyperboliques nonstricts
,” Math. Ann.
170
, 167
–205
(1967
).43.
P.-A.
Dionne
, “Sur les problèmes de Cauchy hyperboliques bien posés
,” J. Anal. Math.
10
, 1
–90
(1962
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.