We study the time evolution of two coupled quantum harmonic oscillators interacting through nonlinear optomechanical-like Hamiltonians that include cross-Kerr interactions. We employ techniques developed to decouple the time-evolution operator and obtain the analytical solution for the time evolution of the system. We apply these results to obtain explicit expressions of a few quantities of interest. Our results do not require approximations and therefore allow us to study the nature and implications of the full nonlinearity of the system. As a potential application, we show that it is possible to greatly increase the population of phonons using a suitable combination of cubic and cross-Kerr interactions.
REFERENCES
1.
J.
Wei
and E.
Norman
, J. Math. Phys.
4
, 575
(1963
).2.
R. R.
Puri
, Mathematical Methods of Quantum Optics
(Springer Science & Business Media
, 2001
), Vol. 79.3.
D. E.
Bruschi
, A. R.
Lee
, and I.
Fuentes
, J. Phys. A: Math. Theor.
46
, 165303
(2013
).4.
G.
Adesso
, S.
Ragy
, and A. R.
Lee
, Open Syst. Inf. Dyn.
21
, 1440001
(2014
).5.
D. E.
Bruschi
and A.
Xuereb
, New J. Phys.
20
, 065004
(2018
).6.
D. E.
Bruschi
, J. Math. Phys.
60
, 062105
(2019
).7.
S.
Qvarfort
, A.
Serafini
, A.
Xuereb
, D.
Rätzel
, and D. E.
Bruschi
, New J. Phys.
21
, 055004
(2019
).8.
E.
Buks
, C. R. Phys.
13
, 454
(2012
).9.
M. R.
Vanner
, I.
Pikovski
, G. D.
Cole
, M. S.
Kim
, Č.
Brukner
, K.
Hammerer
, G. J.
Milburn
, and M.
Aspelmeyer
, Proc. Natl. Acad. Sci. U. S. A.
108
, 16182
(2011
).10.
H.
Ritsch
, P.
Domokos
, F.
Brennecke
, and T.
Esslinger
, Rev. Mod. Phys.
85
, 553
(2013
).11.
E.-j.
Kim
, J. R.
Johansson
, and F.
Nori
, Phys. Rev. A
91
, 033835
(2015
).12.
D.
Rätzel
, F.
Schneiter
, D.
Braun
, T.
Bravo
, R.
Howl
, M. P. E.
Lock
, and I.
Fuentes
, New J. Phys.
20
, 053046
(2018
).13.
J.
Schmöle
, M.
Dragosits
, H.
Hepach
, and M.
Aspelmeyer
, Classical Quantum Gravity
33
, 125031
(2016
).14.
P.
Barberis-Blostein
and I.
Fuentes-Schuller
, Phys. Rev. A
78
, 013641
(2008
).15.
M.
Aspelmeyer
, T. J.
Kippenberg
, and F.
Marquardt
, Rev. Mod. Phys.
86
, 1391
(2014
).16.
E. G.
Brown
, E.
Martín-Martínez
, N. C.
Menicucci
, and R. B.
Mann
, Phys. Rev. D
87
, 084062
(2013
).17.
C.
Moore
and D. E.
Bruschi
, “Tuneable interacting bosons for relativistic and quantum information processing
,” arXiv:1601.01919 (2016
).18.
D. E.
Bruschi
, C.
Sabín
, and G. S.
Paraoanu
, Phys. Rev. A
95
, 062324
(2017
).19.
P.
Lähteenmäki
, G. S.
Paraoanu
, J.
Hassel
, and P. J.
Hakonen
, Nat. Commun.
7
, 12548
(2016
).20.
D.
Dong
and I. R.
Petersen
, IET Control Theory Appl.
4
, 2651
(2010
).21.
C. F.
Ockeloen-Korppi
, E.
Damskägg
, G. S.
Paraoanu
, F.
Massel
, and M. A.
Sillanpää
, Phys. Rev. Lett.
121
, 243601
(2018
).22.
M.
Paternostro
, D.
Vitali
, S.
Gigan
, M. S.
Kim
, C.
Brukner
, J.
Eisert
, and M.
Aspelmeyer
, Phys. Rev. Lett.
99
, 250401
(2007
).23.
J.
Williamson
, Am. J. Math.
58
, 141
(1936
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.