We consider minimization problems of the Thomas–Fermi–Dirac–von Weizsäcker (TFDW) type in which the Newtonian potential is perturbed by a background potential satisfying mild conditions, which ensures the existence of minimizers. We describe the structure of minimizing sequences for those variants and obtain a more precise characterization of patterns in minimizing sequences for the TFDW functionals regularized by long-range perturbations.
REFERENCES
1.
R. L.
Frank
, P. T.
Nam
, and H.
Van Den Bosch
, “The ionization conjecture in Thomas-Fermi-Dirac-von Weizsäcker theory
,” Commun. Pure Appl. Math.
71
, 577
–614
(2018
).2.
E. H.
Lieb
, “Thomas-Fermi and related theories of atoms and molecules
,” Rev. Mod. Phys.
53
, 603
–641
(1981
).3.
P. L.
Lions
, “Solutions of Hartree-Fock equations for Coulomb systems
,” Commun. Math. Phys.
109
, 33
–97
(1987
).4.
C.
Le Bris
, “Some results on the Thomas-Fermi-Dirac-von Weizsäcker model
,” Differ. Integr. Equations
6
, 337
–353
(1993
).5.
P. T.
Nam
and H.
Van Den Bosch
, “Non-existence in Thomas-Fermi-Dirac-von Weizsäcker theory with small nuclear charges
,” Math. Phys. Anal. Geom.
20
, 6
(2017
).6.
S.
Alama
, L.
Bronsard
, R.
Choksi
, and I.
Topaloglu
, “Ground-states for the liquid drop and TFDW models with long-range attraction
,” J. Math. Phys.
58
, 103503
(2017
).7.
J.
Lu
and F.
Otto
, “Non-existence of a minimizer for Thomas-Fermi-Dirac-von Weizsäcker model
,” Commun. Pure Appl. Math.
67
, 1605
–1617
(2014
).8.
P. L.
Lions
, “The concentration-compactness principle in the calculus of variations. The locally compact case, part 1
,” Ann. Inst. Henri Poincaré (C), Anal. Non Linéaire
1
, 109
–149
(1984
).9.
S.
Alama
, L.
Bronsard
, R.
Choksi
, and I.
Topaloglu
, “Droplet breakup in the liquid drop model with background potential
,” Commun. Contemp. Math.
21
, 1850022
(2018
).10.
R.
Choksi
and M. A.
Peletier
, “Small volume fraction limit of the diblock copolymer problem: I. Sharp-interface functional
,” SIAM J. Math. Anal.
42
(3
), 1334
–1370
(2010
).11.
D.
Gilbarg
and N. S.
Trudinger
, Elliptic Partial Differential Equations of Second Order
(Springer
, 2001
).12.
R.
Benguria
, H.
Brézis
, and E. H.
Lieb
, “The Thomas-Fermi-von Weizsäcker theory of atoms and molecules
,” Commun. Math. Phys.
79
, 167
–180
(1981
).13.
I.
Ekeland
, “Nonconvex minimization problems
,” Bull. Am. Math. Soc.
1
, 443
–474
(1979
).14.
M.
Struwe
, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems
, 4th ed. (Springer
, 2008
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.