We consider minimization problems of the Thomas–Fermi–Dirac–von Weizsäcker (TFDW) type in which the Newtonian potential is perturbed by a background potential satisfying mild conditions, which ensures the existence of minimizers. We describe the structure of minimizing sequences for those variants and obtain a more precise characterization of patterns in minimizing sequences for the TFDW functionals regularized by long-range perturbations.

1.
R. L.
Frank
,
P. T.
Nam
, and
H.
Van Den Bosch
, “
The ionization conjecture in Thomas-Fermi-Dirac-von Weizsäcker theory
,”
Commun. Pure Appl. Math.
71
,
577
614
(
2018
).
2.
E. H.
Lieb
, “
Thomas-Fermi and related theories of atoms and molecules
,”
Rev. Mod. Phys.
53
,
603
641
(
1981
).
3.
P. L.
Lions
, “
Solutions of Hartree-Fock equations for Coulomb systems
,”
Commun. Math. Phys.
109
,
33
97
(
1987
).
4.
C.
Le Bris
, “
Some results on the Thomas-Fermi-Dirac-von Weizsäcker model
,”
Differ. Integr. Equations
6
,
337
353
(
1993
).
5.
P. T.
Nam
and
H.
Van Den Bosch
, “
Non-existence in Thomas-Fermi-Dirac-von Weizsäcker theory with small nuclear charges
,”
Math. Phys. Anal. Geom.
20
,
6
(
2017
).
6.
S.
Alama
,
L.
Bronsard
,
R.
Choksi
, and
I.
Topaloglu
, “
Ground-states for the liquid drop and TFDW models with long-range attraction
,”
J. Math. Phys.
58
,
103503
(
2017
).
7.
J.
Lu
and
F.
Otto
, “
Non-existence of a minimizer for Thomas-Fermi-Dirac-von Weizsäcker model
,”
Commun. Pure Appl. Math.
67
,
1605
1617
(
2014
).
8.
P. L.
Lions
, “
The concentration-compactness principle in the calculus of variations. The locally compact case, part 1
,”
Ann. Inst. Henri Poincaré (C), Anal. Non Linéaire
1
,
109
149
(
1984
).
9.
S.
Alama
,
L.
Bronsard
,
R.
Choksi
, and
I.
Topaloglu
, “
Droplet breakup in the liquid drop model with background potential
,”
Commun. Contemp. Math.
21
,
1850022
(
2018
).
10.
R.
Choksi
and
M. A.
Peletier
, “
Small volume fraction limit of the diblock copolymer problem: I. Sharp-interface functional
,”
SIAM J. Math. Anal.
42
(
3
),
1334
1370
(
2010
).
11.
D.
Gilbarg
and
N. S.
Trudinger
,
Elliptic Partial Differential Equations of Second Order
(
Springer
,
2001
).
12.
R.
Benguria
,
H.
Brézis
, and
E. H.
Lieb
, “
The Thomas-Fermi-von Weizsäcker theory of atoms and molecules
,”
Commun. Math. Phys.
79
,
167
180
(
1981
).
13.
I.
Ekeland
, “
Nonconvex minimization problems
,”
Bull. Am. Math. Soc.
1
,
443
474
(
1979
).
14.
M.
Struwe
,
Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems
, 4th ed. (
Springer
,
2008
).
You do not currently have access to this content.