We classify all orthogonal coordinate systems in M4, allowing complete additively separated solutions of the Hamilton–Jacobi equation for a charged test particle in the Liénard–Wiechert field generated by any possible given motion of a point-charge Q. We prove that only the Cavendish–Coulomb field, corresponding to the uniform motion of Q, admits separation of variables, precisely in cylindrical spherical and cylindrical conical-spherical coordinates. We show also that for some fields, the test particle with motion constrained into certain planes admits complete orthogonal separation, and we determine the separable coordinates.

1.
V. I.
Arnold
,
Mathematical Methods in Classical Mechanics
(
Springer
,
1989
).
2.
S.
Benenti
, “
Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation
,”
J. Math. Phys.
38
,
6578
6602
(
1997
).
3.
S.
Benenti
,
C.
Chanu
, and
G.
Rastelli
, “
Variable separation for natural Hamiltonians with vector and scalar potentials on Riemannian manifolds
,”
J. Math. Phys.
42
,
2065
2091
(
2001
).
4.
S.
Bertrand
and
L.
Šnobl
, “
On rotationally invariant integrable and superintegrable classical systems in magnetic fields with non-subgroup type integrals
,”
J. Phys. A: Math. Theor.
52
(
19
),
195201
(
2019
).
5.
D. G.
Boulware
, “
Radiation from a uniformly accelerated charge
,”
Ann. Phys.
124
(
1
),
169
188
(
1980
).
6.
H.
Cavendish
, in
Electrical Researches
, edited by
J. C.
Maxwell
(
Frank Cass
,
London
,
1967
), pp.
217
235
.
7.
C. M.
Cochran
,
R. G.
McLenaghan
, and
R. G.
Smirnov
, “
Equivalence problem for the orthogonal separable webs in 3-dimensional hyperbolic space
,”
J. Math. Phys.
58
,
063513
(
2017
).
8.
L.
Degiovanni
and
G.
Rastelli
, “
Complex variables for separation of the Hamilton-Jacobi equation on real pseudo-Riemannian manifolds
,”
J. Math. Phys.
48
,
073519
(
2007
).
9.
L. P.
Eisenhart
, “
Separable systems of Stäckel
,”
Ann. Math.
35
,
284
305
(
1934
).
10.
T.
Fulton
and
F.
Rohrlich
, “
Classical radiation from a uniformly accelerated charge
,”
Ann. Phys.
9
,
499
517
(
1960
).
11.
J. T.
Horwood
,
R. G.
McLenaghan
, and
R. G.
Smirnov
, “
Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space
,”
Commun. Math. Phys.
259
,
679
709
(
2005
).
12.
B. R.
Iyer
and
C. V.
Vishveshwara
, “
The Frenet-Serret formalism and black holes in higher dimensions
,”
Classical Quantuum Gravity
5
,
961
970
(
1988
).
13.
J. D.
Jackson
,
Classical Electrodynamics
, 2nd ed. (
Wiley
,
1975
).
14.
E. G.
Kalnins
and
W.
Miller
,Jr.
, “
Killing tensors and variable separation for Hamilton-Jacobi and Helmholtz equations
,”
SIAM: Soc. Ind. Appl. Math. J. Math. Anal.
11
,
1011
1026
(
1980
);
E. G.
Kalnins
and
W.
Miller
, Jr.
, “
Killing tensors and nonorthogonal variable separation for Hamilton-Jacobi equations
,”
SIAM: Soc. Ind. Appl. Math. J. Math. Anal.
12
,
617
629
(
1981
).
15.
T.
Levi-Civita
, “
Sulla integrazione della equazione di Hamilton-Jacobi per separazione di variabili
,”
Math. Ann.
59
,
3383
3397
(
1904
).
16.
V.
Obukhov
, “
Separation of variables in Hamilton-Jacobi equation for a charged test particle in the Stäckel spaces of type (2.0)
,” arXiv:2007.09492 (
2020
).
17.
V.
Obukhov
, “
Separation of variables in Hamilton-Jacobi equation for a charged test particle in the Stäckel spaces of type (2.1)
,”
Int. J. Geom. Methods Mod. Phys.
17
(
14
),
2050186
(
2020
).
18.
K.
Rajaratnam
and
R. G.
McLenaghan
, “
Killing tensors, warped products and the orthogonal separation of the Hamilton-Jacobi equation
,”
J. Math. Phys.
55
,
013505
(
2014
).
19.
J.
Rajaratnam
,
R. G.
McLenaghan
, and
C.
Valero
, “
Orthogonal separation of the Hamilton-Jacobi equation on spaces of constant curvature
,”
Symmetry, Integrability Geom.: Methods Appl.
12
,
117
(
2016
).
20.
W.
Rindler
,
Introduction to Special Relativity
, 2nd ed. (
Oxford University Press
,
1991
).
21.
J. A.
Schouten
,
Ricci-Calculs
, 2nd ed. (
Springer-Verlag
,
1954
).
22.
P.
Stäckel
, “
Uber die Bewegung eines Punktes in einer n-fachen Mannigfaltigkeit
,”
Math. Ann.
42
,
537
563
(
1893
);
P.
Stäckel
, “
Uber quadratizche integrale der differentialgleichungen der dynamik
,”
Ann. Mat. Pura
26
,
55
60
(
1897
).
23.
J.
Steigenberger
, “
On separation of variables in mechanical systems
,”
Acad. Roy. Belg. Bull. Cl. Sci.
49
(
6
),
990
1014
(
1963
);
J.
Steigenberger
, “
Vollstäandige integrale Hamilton-Jacobischer differentialgleichungen vom verallgemeinerten Stäckelschen typ
,”
Wiss. Z. Hochsch. Elektrotech. Ilmenau
11
,
169
172
(
1965
).
24.
R. M.
Wald
,
General Relativity
(
University of Chicago Press
,
1984
), p.
125
.
25.
R.
Zhdanov
and
A.
Zhalij
, “
On separable Schrödinger equations
,”
J. Math. Phys.
40
(
12
),
6319
6338
(
1999
).
You do not currently have access to this content.