We classify all orthogonal coordinate systems in , allowing complete additively separated solutions of the Hamilton–Jacobi equation for a charged test particle in the Liénard–Wiechert field generated by any possible given motion of a point-charge Q. We prove that only the Cavendish–Coulomb field, corresponding to the uniform motion of Q, admits separation of variables, precisely in cylindrical spherical and cylindrical conical-spherical coordinates. We show also that for some fields, the test particle with motion constrained into certain planes admits complete orthogonal separation, and we determine the separable coordinates.
REFERENCES
1.
V. I.
Arnold
, Mathematical Methods in Classical Mechanics
(Springer
, 1989
).2.
S.
Benenti
, “Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation
,” J. Math. Phys.
38
, 6578
–6602
(1997
).3.
S.
Benenti
, C.
Chanu
, and G.
Rastelli
, “Variable separation for natural Hamiltonians with vector and scalar potentials on Riemannian manifolds
,” J. Math. Phys.
42
, 2065
–2091
(2001
).4.
S.
Bertrand
and L.
Šnobl
, “On rotationally invariant integrable and superintegrable classical systems in magnetic fields with non-subgroup type integrals
,” J. Phys. A: Math. Theor.
52
(19
), 195201
(2019
).5.
D. G.
Boulware
, “Radiation from a uniformly accelerated charge
,” Ann. Phys.
124
(1
), 169
–188
(1980
).6.
H.
Cavendish
, in Electrical Researches
, edited by J. C.
Maxwell
(Frank Cass
, London
, 1967
), pp. 217
–235
.7.
C. M.
Cochran
, R. G.
McLenaghan
, and R. G.
Smirnov
, “Equivalence problem for the orthogonal separable webs in 3-dimensional hyperbolic space
,” J. Math. Phys.
58
, 063513
(2017
).8.
L.
Degiovanni
and G.
Rastelli
, “Complex variables for separation of the Hamilton-Jacobi equation on real pseudo-Riemannian manifolds
,” J. Math. Phys.
48
, 073519
(2007
).9.
L. P.
Eisenhart
, “Separable systems of Stäckel
,” Ann. Math.
35
, 284
–305
(1934
).10.
T.
Fulton
and F.
Rohrlich
, “Classical radiation from a uniformly accelerated charge
,” Ann. Phys.
9
, 499
–517
(1960
).11.
J. T.
Horwood
, R. G.
McLenaghan
, and R. G.
Smirnov
, “Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space
,” Commun. Math. Phys.
259
, 679
–709
(2005
).12.
B. R.
Iyer
and C. V.
Vishveshwara
, “The Frenet-Serret formalism and black holes in higher dimensions
,” Classical Quantuum Gravity
5
, 961
–970
(1988
).13.
14.
E. G.
Kalnins
and W.
Miller
,Jr. , “Killing tensors and variable separation for Hamilton-Jacobi and Helmholtz equations
,” SIAM: Soc. Ind. Appl. Math. J. Math. Anal.
11
, 1011
–1026
(1980
);E. G.
Kalnins
and W.
Miller
, Jr., “Killing tensors and nonorthogonal variable separation for Hamilton-Jacobi equations
,” SIAM: Soc. Ind. Appl. Math. J. Math. Anal.
12
, 617
–629
(1981
).15.
T.
Levi-Civita
, “Sulla integrazione della equazione di Hamilton-Jacobi per separazione di variabili
,” Math. Ann.
59
, 3383
–3397
(1904
).16.
V.
Obukhov
, “Separation of variables in Hamilton-Jacobi equation for a charged test particle in the Stäckel spaces of type (2.0)
,” arXiv:2007.09492 (2020
).17.
V.
Obukhov
, “Separation of variables in Hamilton-Jacobi equation for a charged test particle in the Stäckel spaces of type (2.1)
,” Int. J. Geom. Methods Mod. Phys.
17
(14
), 2050186
(2020
).18.
K.
Rajaratnam
and R. G.
McLenaghan
, “Killing tensors, warped products and the orthogonal separation of the Hamilton-Jacobi equation
,” J. Math. Phys.
55
, 013505
(2014
).19.
J.
Rajaratnam
, R. G.
McLenaghan
, and C.
Valero
, “Orthogonal separation of the Hamilton-Jacobi equation on spaces of constant curvature
,” Symmetry, Integrability Geom.: Methods Appl.
12
, 117
(2016
).20.
W.
Rindler
, Introduction to Special Relativity
, 2nd ed. (Oxford University Press
, 1991
).21.
22.
P.
Stäckel
, “Uber die Bewegung eines Punktes in einer n-fachen Mannigfaltigkeit
,” Math. Ann.
42
, 537
–563
(1893
);P.
Stäckel
, “Uber quadratizche integrale der differentialgleichungen der dynamik
,” Ann. Mat. Pura
26
, 55
–60
(1897
).23.
J.
Steigenberger
, “On separation of variables in mechanical systems
,” Acad. Roy. Belg. Bull. Cl. Sci.
49
(6
), 990
–1014
(1963
);J.
Steigenberger
, “Vollstäandige integrale Hamilton-Jacobischer differentialgleichungen vom verallgemeinerten Stäckelschen typ
,” Wiss. Z. Hochsch. Elektrotech. Ilmenau
11
, 169
–172
(1965
).24.
R. M.
Wald
, General Relativity
(University of Chicago Press
, 1984
), p. 125
.25.
R.
Zhdanov
and A.
Zhalij
, “On separable Schrödinger equations
,” J. Math. Phys.
40
(12
), 6319
–6338
(1999
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.