Bifurcations of one dimensional dynamical systems are discussed based on some ultradiscrete equations. The ultradiscrete equations are derived from normal forms of one-dimensional nonlinear differential equations, each of which has saddle-node, transcritical, or supercritical pitchfork bifurcations. An additional bifurcation, which is similar to the flip bifurcation, is found in ultradiscrete equations for supercritical pitchfork bifurcations. Dynamical properties of these ultradiscrete bifurcations can be characterized with graphical analysis. As an example of application of our treatment, we focus on an ultradiscrete equation of the FitzHugh–Nagumo model and discuss its dynamical properties.

1.
T.
Tokihiro
,
D.
Takahashi
,
J.
Matsukidaira
, and
J.
Satsuma
,
Phys. Rev. Lett.
76
,
3247
(
1996
).
2.
B.
Grammaticos
,
Y.
Ohta
,
A.
Ramani
,
D.
Takahashi
, and
K. M.
Tamizhmani
,
Phys. Lett. A
226
,
53
(
1997
).
3.
D.
Takahashi
and
J.
Satsuma
,
J. Phys. Soc. Jpn.
59
,
3514
(
1990
).
4.
J.
Matsukibara
,
J.
Satsuma
,
D.
Takahashi
,
T.
Tokihiro
, and
M.
Torii
,
Phys. Lett. A
225
,
287
(
1997
).
5.
A.
Nagai
,
D.
Takahashi
, and
T.
Tokihiro
,
Phys. Lett. A
255
,
265
(
1999
).
6.
T.
Nagatani
,
Phys. Rev. E
58
,
700
(
1998
).
7.
M.
Murata
,
J. Differ. Equations Appl.
19
,
1008
(
2013
).
8.
S.
Ohmori
and
Y.
Yamazaki
,
Prog. Theor. Exp. Phys.
2014
,
08A01
.
9.
K.
Matsuya
and
M.
Murata
,
Discrete Contin. Dyn. Syst. B
20
,
173
(
2015
).
10.
M.
Murata
,
J. Phys. A: Math. Theor.
48
,
255202
(
2015
).
11.
S.
Gibo
and
H.
Ito
,
J. Theor. Biol.
378
,
89
(
2015
).
12.
S.
Ohmori
and
Y.
Yamazaki
,
J. Phys. Soc. Jpn.
85
,
045001
(
2016
).
13.
G.
Nicolis
and
I.
Prigogine
,
Self-organization in Nonequilibrium Systems
(
Wiley
,
New York
,
1977
).
14.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields
(
Springer
,
New York
,
1983
).
15.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos
(
Westview Press
,
USA
,
1994
).
16.
G.
Nicolis
,
Introduction to Nonlinear Science
(
Cambridge University Press
,
1995
).
17.
F.
Baccelli
,
G.
Cohen
,
G. J.
Olsder
, and
J. P.
Quadrat
,
Synchronization and Linearization
(
Wiley
,
New York
,
1992
).
18.
R.
Devaney
,
An Introduction to Chaotic Dynamical Systems
, 2nd ed. (
Addison-Wesley
,
1989
).
19.
C.
Robinson
,
Dynamical Systems -Stability, Symbolic Dynamics, and Chaos-
, 2nd ed. (
CRC Press
,
Florida
,
1999
).
20.
Y. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
(
Springer-Verlag
,
New York
,
2010
).
21.
C.
Rocsoreanu
,
A.
Georgescu
, and
N.
Giurgiteanu
,
The FitzHugh-Nagumo Model
(
Springer Science+Business Media
,
Dordrecht
,
2000
).
22.
M.
Sasaki
,
S.
Nishioka
,
F.
Hongo
, and
M.
Murata
, Reports of RIAM Symposium, Report No. 29AO-S7, 81,
2018
.
23.
W.
Melo
and
R. G.
Riezman
,
One-Dimensional Dynamics
(
Springer-Verlag
,
New York
,
2012
).
You do not currently have access to this content.