The Gauss–Bonnet–Chern mass was defined and studied by Ge, Wang, and Wu [Adv. Math. 266, 84–119 (2014)]. In this paper, we consider the evolution of Gauss–Bonnet–Chern mass along the Ricci flow and the Yamabe flow.
REFERENCES
1.
Y.
Ge
, G.
Wang
, and J.
Wu
, “A new mass for asymptotically flat manifolds
,” Adv. Math.
266
, 84
–119
(2014
).2.
R.
Arnowitt
, S.
Deser
, and C. W.
Misner
, “Coordinate invariance and energy expressions in general relativity
,” Phys. Rev.
122
, 997
–1006
(1961
).3.
R.
Bartnik
, “The mass of an asymptotically flat manifold
,” Commun. Pure Appl. Math.
39
, 661
–693
(1986
).4.
A.
de Sousa
and F.
Girão
, “The Gauss-Bonnet-Chern mass of higher-codimension graphs
,” Pac. J. Math.
298
, 201
–216
(2019
).5.
Y.
Ge
, G.
Wang
, and J.
Wu
, “The Gauss-Bonnet-Chern mass of conformally flat manifolds
,” Int. Math. Res. Not.
2014
, 4855
–4878
.6.
Y.
Ge
, G.
Wang
, and J.
Wu
, “The GBC mass for asymptotically hyperbolic manifolds
,” Math. Z.
281
, 257
–297
(2015
).7.
Y.
Ge
, G.
Wang
, J.
Wu
, and C.
Xia
, “Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality
,” Front. Math. China
11
, 1207
–1237
(2016
).8.
H.
Li
, Y.
Wei
, and C.
Xiong
, “The Gauss-Bonnet-Chern mass for graphic manifolds
,” Ann. Global Anal. Geom.
45
, 251
–266
(2014
).9.
G.
Wang
and J.
Wu
, “Chern’s magic form and the Gauss-Bonnet-Chern mass
,” Math. Z.
287
, 843
–854
(2017
).10.
X.
Dai
and L.
Ma
, “Mass under the Ricci flow
,” Commun. Math. Phys.
274
, 65
–80
(2007
).11.
S.
Brendle
, “Convergence of the Yamabe flow for arbitrary initial energy
,” J. Differ. Geom.
69
, 217
–278
(2005
).12.
S.
Brendle
, “Convergence of the Yamabe flow in dimension 6 and higher
,” Invent. Math.
170
, 541
–576
(2007
).13.
B.
Chow
, “The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature
,” Commun. Pure Appl. Math.
45
, 1003
–1014
(1992
).14.
P. T.
Ho
, “Backwards uniqueness of the Yamabe flow
,” Differ. Geom. Appl.
62
, 184
–189
(2019
).15.
P. T.
Ho
, “First eigenvalues of geometric operators under the Yamabe flow
,” Ann. Global Anal. Geom.
54
, 449
–472
(2018
).16.
L.
Ma
, “Yamabe flow and metrics of constant scalar curvature on a complete manifold
,” Calc. Var. Partial Differ. Equations
58
(1
), 30
(2019
).17.
L.
Ma
, L.
Cheng
, and A.
Zhu
, “Extending Yamabe flow on complete Riemannian manifolds
,” Bull. Sci. Math.
136
, 882
–891
(2012
).18.
H.
Schwetlick
and M.
Struwe
, “Convergence of the Yamabe flow for “large” energies
,” J. Reine Angew. Math.
2003
(562
), 59
–100
.19.
R.
Ye
, “Global existence and convergence of the Yamabe flow
,” J. Differ. Geom.
39
, 35
–50
(1994
).20.
L.
Cheng
and A.
Zhu
, “Yamabe flow and ADM mass on asymptotically flat manifolds
,” J. Math. Phys.
56
, 101507
(2015
).21.
T.
Balehowsky
and E.
Woolgar
, “The Ricci flow of asymptotically hyperbolic mass and applications
,” J. Math. Phys.
53
(7
), 072501
(2012
).22.
R.
Haslhofer
, “A mass-decreasing flow in dimension three
,” Math. Res. Lett.
19
, 927
–938
(2012
).23.
Y.
Li
, “Ricci flow on asymptotically Euclidean manifolds
,” Geom. Topol.
22
, 1837
–1891
(2018
).24.
P.
Lu
, J.
Qing
, and Y.
Zheng
, “A note on conformal Ricci flow
,” Pac. J. Math.
268
, 413
–434
(2014
).25.
T. A.
Oliynyk
and E.
Woolgar
, “Rotationally symmetric Ricci flow on asymptotically flat manifolds
,” Commun. Anal. Geom.
15
, 535
–568
(2007
).26.
W.
Sheng
and C.
Wu
, “Total mass under connection Ricci flow
,” J. Geom. Phys.
61
, 1965
–1975
(2011
).27.
S.
Bando
, A.
Kasue
, and H.
Nakajima
, “On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth
,” Invent. Math.
97
, 313
–349
(1989
).28.
W.-X.
Shi
, “Ricci flow and the uniformization on complete noncompact Kähler manifolds
,” J. Differ. Geom.
45
, 94
–220
(1997
).29.
B.-L.
Chen
and X.-P.
Zhu
, “A gap theorem for complete noncompact manifolds with nonnegative Ricci curvature
,” Commun. Anal. Geom.
10
, 217
–239
(2002
).30.
Y.
An
and L.
Ma
, “The maximum principle and the Yamabe flow
,” in Partial Differential Equations and Their Applications
(World Scientific
, Singapore
, 1999
), pp. 211
–224
.31.
J. A.
Viaclovsky
, “Conformal geometry, contact geometry, and the calculus of variations
,” Duke Math. J.
101
, 283
–316
(2000
).32.
R. C.
Reilly
, “Variational properties of functions of the mean curvatures for hypersurfaces in space forms
,” J. Differ. Geom.
8
, 465
–477
(1973
).© 2020 Author(s).
2020
Author(s)
You do not currently have access to this content.