The Gauss–Bonnet–Chern mass was defined and studied by Ge, Wang, and Wu [Adv. Math. 266, 84–119 (2014)]. In this paper, we consider the evolution of Gauss–Bonnet–Chern mass along the Ricci flow and the Yamabe flow.

1.
Y.
Ge
,
G.
Wang
, and
J.
Wu
, “
A new mass for asymptotically flat manifolds
,”
Adv. Math.
266
,
84
119
(
2014
).
2.
R.
Arnowitt
,
S.
Deser
, and
C. W.
Misner
, “
Coordinate invariance and energy expressions in general relativity
,”
Phys. Rev.
122
,
997
1006
(
1961
).
3.
R.
Bartnik
, “
The mass of an asymptotically flat manifold
,”
Commun. Pure Appl. Math.
39
,
661
693
(
1986
).
4.
A.
de Sousa
and
F.
Girão
, “
The Gauss-Bonnet-Chern mass of higher-codimension graphs
,”
Pac. J. Math.
298
,
201
216
(
2019
).
5.
Y.
Ge
,
G.
Wang
, and
J.
Wu
, “
The Gauss-Bonnet-Chern mass of conformally flat manifolds
,”
Int. Math. Res. Not.
2014
,
4855
4878
.
6.
Y.
Ge
,
G.
Wang
, and
J.
Wu
, “
The GBC mass for asymptotically hyperbolic manifolds
,”
Math. Z.
281
,
257
297
(
2015
).
7.
Y.
Ge
,
G.
Wang
,
J.
Wu
, and
C.
Xia
, “
Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality
,”
Front. Math. China
11
,
1207
1237
(
2016
).
8.
H.
Li
,
Y.
Wei
, and
C.
Xiong
, “
The Gauss-Bonnet-Chern mass for graphic manifolds
,”
Ann. Global Anal. Geom.
45
,
251
266
(
2014
).
9.
G.
Wang
and
J.
Wu
, “
Chern’s magic form and the Gauss-Bonnet-Chern mass
,”
Math. Z.
287
,
843
854
(
2017
).
10.
X.
Dai
and
L.
Ma
, “
Mass under the Ricci flow
,”
Commun. Math. Phys.
274
,
65
80
(
2007
).
11.
S.
Brendle
, “
Convergence of the Yamabe flow for arbitrary initial energy
,”
J. Differ. Geom.
69
,
217
278
(
2005
).
12.
S.
Brendle
, “
Convergence of the Yamabe flow in dimension 6 and higher
,”
Invent. Math.
170
,
541
576
(
2007
).
13.
B.
Chow
, “
The Yamabe flow on locally conformally flat manifolds with positive Ricci curvature
,”
Commun. Pure Appl. Math.
45
,
1003
1014
(
1992
).
14.
P. T.
Ho
, “
Backwards uniqueness of the Yamabe flow
,”
Differ. Geom. Appl.
62
,
184
189
(
2019
).
15.
P. T.
Ho
, “
First eigenvalues of geometric operators under the Yamabe flow
,”
Ann. Global Anal. Geom.
54
,
449
472
(
2018
).
16.
L.
Ma
, “
Yamabe flow and metrics of constant scalar curvature on a complete manifold
,”
Calc. Var. Partial Differ. Equations
58
(
1
),
30
(
2019
).
17.
L.
Ma
,
L.
Cheng
, and
A.
Zhu
, “
Extending Yamabe flow on complete Riemannian manifolds
,”
Bull. Sci. Math.
136
,
882
891
(
2012
).
18.
H.
Schwetlick
and
M.
Struwe
, “
Convergence of the Yamabe flow for “large” energies
,”
J. Reine Angew. Math.
2003
(
562
),
59
100
.
19.
R.
Ye
, “
Global existence and convergence of the Yamabe flow
,”
J. Differ. Geom.
39
,
35
50
(
1994
).
20.
L.
Cheng
and
A.
Zhu
, “
Yamabe flow and ADM mass on asymptotically flat manifolds
,”
J. Math. Phys.
56
,
101507
(
2015
).
21.
T.
Balehowsky
and
E.
Woolgar
, “
The Ricci flow of asymptotically hyperbolic mass and applications
,”
J. Math. Phys.
53
(
7
),
072501
(
2012
).
22.
R.
Haslhofer
, “
A mass-decreasing flow in dimension three
,”
Math. Res. Lett.
19
,
927
938
(
2012
).
23.
Y.
Li
, “
Ricci flow on asymptotically Euclidean manifolds
,”
Geom. Topol.
22
,
1837
1891
(
2018
).
24.
P.
Lu
,
J.
Qing
, and
Y.
Zheng
, “
A note on conformal Ricci flow
,”
Pac. J. Math.
268
,
413
434
(
2014
).
25.
T. A.
Oliynyk
and
E.
Woolgar
, “
Rotationally symmetric Ricci flow on asymptotically flat manifolds
,”
Commun. Anal. Geom.
15
,
535
568
(
2007
).
26.
W.
Sheng
and
C.
Wu
, “
Total mass under connection Ricci flow
,”
J. Geom. Phys.
61
,
1965
1975
(
2011
).
27.
S.
Bando
,
A.
Kasue
, and
H.
Nakajima
, “
On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth
,”
Invent. Math.
97
,
313
349
(
1989
).
28.
W.-X.
Shi
, “
Ricci flow and the uniformization on complete noncompact Kähler manifolds
,”
J. Differ. Geom.
45
,
94
220
(
1997
).
29.
B.-L.
Chen
and
X.-P.
Zhu
, “
A gap theorem for complete noncompact manifolds with nonnegative Ricci curvature
,”
Commun. Anal. Geom.
10
,
217
239
(
2002
).
30.
Y.
An
and
L.
Ma
, “
The maximum principle and the Yamabe flow
,” in
Partial Differential Equations and Their Applications
(
World Scientific
,
Singapore
,
1999
), pp.
211
224
.
31.
J. A.
Viaclovsky
, “
Conformal geometry, contact geometry, and the calculus of variations
,”
Duke Math. J.
101
,
283
316
(
2000
).
32.
R. C.
Reilly
, “
Variational properties of functions of the mean curvatures for hypersurfaces in space forms
,”
J. Differ. Geom.
8
,
465
477
(
1973
).
You do not currently have access to this content.