Quantum permutation matrices and quantum magic squares are generalizations of permutation matrices and magic squares, where the entries are no longer numbers but elements from arbitrary (non-commutative) algebras. The famous Birkhoff–von Neumann theorem characterizes magic squares as convex combinations of permutation matrices. In the non-commutative case, the corresponding question is as follows: Does every quantum magic square belong to the matrix convex hull of quantum permutation matrices? That is, does every quantum magic square dilate to a quantum permutation matrix? Here, we show that this is false even in the simplest non-commutative case. We also classify the quantum magic squares that dilate to a quantum permutation matrix with commuting entries and prove a quantitative lower bound on the diameter of this set. Finally, we conclude that not all Arveson extreme points of the free spectrahedron of quantum magic squares are quantum permutation matrices.

1.
Atserias
,
A.
,
Mančinska
,
L.
,
Roberson
,
D. E.
,
Šámal
,
R.
,
Severini
,
S.
, and
Varvitsiotis
,
A.
, “
Quantum and non-signalling graph isomorphisms
,”
J. Combin. Theory Ser. B
136
,
289
328
(
2019
); arXiv:1611.09837 [quant-ph].
2.
Banica
,
T.
,
Bichon
,
J.
, and
Collins
,
B.
, “
Quantum permutation groups: A survey
,” in
Noncommutative Harmonic Analysis with Applications to Probability
, Banach Center publications Vol. 78 (
Polish Academy of Sciences; Institute of Mathematics
,
Warsaw
,
2007
), pp.
13
34
; arXiv:math/0612724 [math.CO].
3.
Barvinok
,
A.
,
A Course in Convexity
, Graduate Studies in Mathematics Vol. 54 (
American Mathematical Society
,
Providence, RI
,
2002
).
4.
Brualdi
,
R. A.
, “
Some applications of doubly stochastic matrices
,”
Lin. Algebra Appl.
107
,
77
100
(
1988
).
5.
Budish
,
E.
,
Che
,
Y.-K.
,
Kojima
,
F.
, and
Milgrom
,
P.
, “
Implementing random assignments: A generalization of the Birkhoff-von Neumann theorem
,” Technical report,
2009
.
6.
Choi
,
M.-D.
and
Wu
,
P. Y.
, “
Convex combinations of projections
,”
Linear Algebra Appl.
136
,
25
42
(
1990
).
7.
Effros
,
E. G.
and
Winkler
,
S.
, “
Matrix convexity: Operator analogues of the bipolar and Hahn-Banach theorems
,”
J. Funct. Anal.
144
(
1
),
117
152
(
1997
).
8.
Evert
,
E.
and
Helton
,
J. W.
, “
Arveson extreme points span free spectrahedra
,”
Math. Ann.
375
(
1-2
),
629
653
(
2019
); arXiv:1806.09053 [math.OA].
9.
Fillmore
,
P. A.
, “
Sums of operators with square zero
,”
Acta Sci. Math. (Szeged)
28
,
285
288
(
1967
).
10.
Fritz
,
T.
,
Netzer
,
T.
, and
Thom
,
A.
, “
Spectrahedral containment and operator systems with finite-dimensional realization
,”
SIAM J. Appl. Algebra Geom.
1
,
556
574
(
2017
); arXiv:1609.07908 [math.FA].
11.
Haagerup
,
U.
and
Musat
,
M.
, “
Factorization and dilation problems for completely positive maps on von Neumann algebras
,”
Commun. Math. Phys.
303
(
2
),
555
594
(
2011
); arXiv:1009.0778 [math.OA].
12.
Huber
,
B.
and
Netzer
,
T.
, “
A note on non-commutative polytopes and polyhedra
,”
Adv. Geom.
(to be published) (
2018
); arXiv:1809.00476 [math.AG].
13.
Landau
,
L. J.
and
Streater
,
R. F.
, “
On Birkhoff’s theorem for doubly stochastic completely positive maps of matrix algebras
,”
Linear Algebra Appl.
193
,
107
127
(
1993
).
14.
Lupini
,
M.
,
Mančinska
,
L.
, and
Roberson
,
D. E.
, “
Nonlocal games and quantum permutation groups
,”
J. Funct. Anal.
279
(
5
),
108592
(
2020
).
15.
Mendl
,
C. B.
and
Wolf
,
M. M.
, “
Unital quantum channels - convex structure and revivals of Birkhoff’s theorem
,”
Commun. Math. Phys.
289
(
3
),
1057
1086
(
2009
); arXiv:0806.2820 [quant-ph].
16.
Netzer
,
T.
, “
Free semialgebraic geometry
,”
Internat. Math. Nachrichten
240
,
31
41
(
2019
); arXiv:1902.11170 [math.AG].
17.
Paulsen
,
V.
Completely Bounded Maps and Operator Algebras
, Cambridge Studies in Advanced Mathematics Vol. 78 (
Cambridge University Press
,
Cambridge
,
2002
).
18.
Paulsen
,
V.
and
Rahaman
,
M.
, “
Bisynchronous games and factorizable maps
,” arXiv:1908.03842 [quant-ph] (
2019
).
19.
Ziegler
,
G. M.
Lectures on Polytopes
, Graduate Texts in Mathematics Vol. 152 (
Springer-Verlag
,
New York
,
1995
).
You do not currently have access to this content.