States of Low Energy (SLEs) are exact Hadamard states defined on arbitrary Friedmann–Lemaître spacetimes. They are constructed from a fiducial state by minimizing the Hamiltonian’s expectation value after averaging with a temporal window function. We show the SLE to be expressible solely in terms of the (state independent) commutator function. They also admit a convergent series expansion in powers of the spatial momentum, both for massive and for massless theories. In the massless case, the leading infrared behavior is found to be Minkowski-like for all scale factors. This provides a new cure for the infrared divergences in Friedmann–Lemaître spacetimes with accelerated expansion. As a consequence, massless SLEs are viable candidates for pre-inflationary vacua, and in a soluble model, they are shown to entail a qualitatively correct primordial power spectrum.

1.
I.
Khavkine
and
V.
Moretti
, “
Algebraic QFT in curved spacetime and quasifree Hadamard states: An introduction
,” in
Advances in Algebraic Quantum Field Theory
, edited by
R.
Brunetti
,
C.
Dappiaggi
,
K.
Fredenhagen
, and
J.
Yngvason
(
Springer International Publishing
,
Cham
,
2015
), pp.
191
251
.
2.
C. J.
Fewster
and
R.
Verch
, “
The necessity of the Hadamard condition
,”
Classical Quantum Gravity
30
,
235027
(
2013
); arXiv:1307.5242 [gr-qc].
3.
C.
Dappiaggi
,
V.
Moretti
, and
N.
Pinamonti
,
Hadamard States from Light-Like Hypersurfaces
(
Springer
,
2017
), Vol. 25; arXiv:1706.09666 [math-ph].
4.
W.
Junker
and
E.
Schrohe
, “
Adiabatic vacuum states on general space-time manifolds: Definition, construction, and physical properties
,”
Ann. Henri Poincare
3
,
1113
1182
(
2002
); arXiv:math-ph/0109010.
5.
M.
Brum
and
K.
Fredenhagen
, “
‘Vacuum-like’ Hadamard states for quantum fields on curved spacetimes
,”
Classical Quantum Gravity
31
,
025024
(
2014
); arXiv:1307.0482 [gr-qc].
6.
L. E.
Parker
and
D.
Toms
,
Quantum Field Theory in Curved Spacetime: Quantized Field and Gravity
, Cambridge Monographs on Mathematical Physics (
Cambridge University Press
,
2009
).
7.
H.
Olbermann
, “
States of low energy on Robertson-Walker spacetimes
,”
Classical Quantum Gravity
24
,
5011
5030
(
2007
); arXiv:0704.2986 [gr-qc].
8.
S. A.
Fulling
, “
Remarks on positive frequency and Hamiltonians in expanding universes
,”
Gen. Rel. Gravity
10
,
807
824
(
1979
).
9.
L. H.
Ford
and
L.
Parker
, “
Infrared divergences in a class of Robertson-Walker universes
,”
Phys. Rev. D
16
,
245
250
(
1977
).
10.
T.-P.
Hack
,
Cosmological Applications of Algebraic Quantum Field Theory in Curved Spacetimes
(
Springer
,
2016
).
11.
J.
Guven
,
B.
Lieberman
, and
C. T.
Hill
, “
Schrödinger-picture field theory in Robertson-Walker flat spacetimes
,”
Phys. Rev. D
39
,
438
451
(
1989
).
12.
D. V.
Long
and
G. M.
Shore
, “
The Schrodinger wave functional and vacuum states in curved space-time
,”
Nucl. Phys. B
530
,
247
278
(
1998
); arXiv:hep-th/9605004.
13.
D. V.
Long
and
G. M.
Shore
, “
The Schrödinger wave functional and vacuum states in curved space-time. 2. Boundaries and foliations
,”
Nucl. Phys. B
530
,
279
303
(
1998
); arXiv:gr-qc/9607032.
14.
J. F.
Koksma
,
T.
Prokopec
, and
G. I.
Rigopoulos
, “
The Scalar field kernel in cosmological spaces
,”
Classical Quantum Gravity
25
,
125009
(
2008
); arXiv:0712.3685 [gr-qc].
15.
A.
Degner
and
R.
Verch
, “
Cosmological particle creation in states of low energy
,”
J. Math. Phys.
51
,
022302
(
2010
); arXiv:0904.1273 [gr-qc].
16.
K.
Them
and
M.
Brum
, “
States of low energy in homogeneous and inhomogeneous, expanding spacetimes
,”
Classical Quantum Gravity
30
,
235035
(
2013
); arXiv:1302.3174 [gr-qc].
17.
M.
Reed
and
B.
Simon
,
Methods of Modern Mathematical Physics. IV Analysis of Operators
(
Academic Press
,
New York
,
1978
).
18.
N.
Afshordi
,
S.
Aslanbeigi
, and
R. D.
Sorkin
, “
A distinguished vacuum state for a quantum field in a curved spacetime: Formalism, features, and cosmology
,”
JHEP
08
,
137
(
2012
); arXiv:1205.1296 [hep-th].
19.

This is the (generalized) Feynman Green’s function. Any other choice of Green’s function also renders L in (86) a contraction, merely the value of p* may change.

20.
T.
Janssen
and
T.
Prokopec
, “
Regulating the infrared by mode matching: A massless scalar in expanding spaces with constant deceleration
,”
Phys. Rev. D
83
,
084035
(
2011
); arXiv:0906.0666 [gr-qc].
21.
S.
Das
,
G.
Goswami
,
J.
Prasad
, and
R.
Rangarajan
, “
Revisiting a pre-inflationary radiation era and its effect on the CMB power spectrum
,”
J. Cosmol. Astropart. Phys.
06
,
001
(
2015
); arXiv:1412.7093 [astro-ph.CO].
22.
G.
Marozzi
,
M.
Rinaldi
, and
R.
Durrer
, “
On infrared and ultraviolet divergences of cosmological perturbations
,”
Phys. Rev. D
83
,
105017
(
2011
); arXiv:1102.2206 [astro-ph.CO].
23.
C. R.
Contaldi
,
M.
Peloso
,
L.
Kofman
, and
A.
Linde
, “
Suppressing the lower multipoles in the CMB anisotropies
,”
J. Cosmol. Astropart. Phys.
07
,
002
(
2003
).
24.
B. A.
Powell
and
W. H.
Kinney
, “
The pre-inflationary vacuum in the cosmic microwave background
,”
Phys. Rev. D
76
,
063512
(
2007
); arXiv:astro-ph/0612006.
25.
A.
Higuchi
and
N.
Rendell
, “
Infrared divergences for free quantum fields in cosmological spacetimes
,”
Classical Quantum Gravity
35
,
115004
(
2018
); arXiv:1711.03964 [gr-qc].
26.
M. B.
Fröb
,
T.-P.
Hack
, and
A.
Higuchi
, “
Compactly supported linearised observables in single-field inflation
,”
J. Cosmol. Astropart. Phys.
07
,
043
(
2017
); arXiv:1703.01158 [gr-qc].
27.
J.
Swieca
, “
Goldstone theorem and related topics
,” in
Proceedings, Summer School on Theoretical Physics, Cargèse Lectures in Physics: Cargese, France, September 1969
, edited by
D.
Kastler
(
Gordon & Breach
,
New York
,
1970
), Vol. 4.
28.
J.
Lopuszanski
,
An Introduction to Symmetry and Supersymmetry in Quantum Field Theory
(
World Scientific
,
1991
), pp.
447
450
.
29.

A WKB ansatz proper is one where only the integrand of the exponent is formally expanded in terms of local coefficients.

30.
C.
Lueders
and
J.
Roberts
, “
Local quasiequivalence and adiabatic vacuum states
,”
Commun. Math. Phys.
134
,
29
63
(
1990
).
31.
G.
Nemes
, “
On the Borel summability of WKB solutions of certain Schrödinger-type differential equations
,” arXiv:2004.13367 [math.CA] (
2020
).
32.
L.
Dickey
,
Soliton Equations and Hamiltonian Systems
, 2nd ed. (
World Scientific
,
2003
), Vol. 12.
33.
I. G.
Avramidi
,
Heat Kernel Method and Its Applications
(
Birkhauser
,
Cham
,
2015
).
34.
K.-T.
Pirk
, “
Hadamard states and adiabatic vacua
,”
Phys. Rev. D
48
,
3779
3783
(
1993
).
35.
J. M. M.
Senovilla
and
D.
Garfinkle
, “
The 1965 Penrose singularity theorem
,”
Classical Quantum Gravity
32
,
124008
(
2015
); arXiv:1410.5226 [gr-qc].
36.
S.
Foster
, “
Scalar field cosmologies and the initial space-time singularity
,”
Classical Quantum Gravity
15
,
3485
3504
(
1998
); arXiv:gr-qc/9806098.
37.
W. J.
Handley
,
S.
Brechet
,
A.
Lasenby
, and
M.
Hobson
, “
Kinetic initial conditions for inflation
,”
Phys. Rev. D
89
,
063505
(
2014
); arXiv:1401.2253 [astro-ph.CO].
38.
S.
Weinberg
,
Cosmology
(
Oxford University Press
,
2008
).
You do not currently have access to this content.