We study moments of the logarithmic derivative of characteristic polynomials of orthogonal and symplectic random matrices. In particular, we compute the asymptotics for large matrix size, N, of these moments evaluated at points that are approaching 1. This follows the work of Bailey et al. [J. Math. Phys. 60(8), 083509 (2019)] where they computed these asymptotics in the case of unitary random matrices.

1.
E. C.
Bailey
,
S.
Bettin
,
G.
Blower
,
J. B.
Conrey
,
A.
Prokhorov
,
M. O.
Rubinstein
, and
N. C.
Snaith
, “
Mixed moments of characteristic polynomials of random unitary matrices
,”
J. Math. Phys.
60
(
8
),
083509
(
2019
); arXiv:math.nt/1901.07479.
2.
J. B.
Conrey
,
D. W.
Farmer
,
J. P.
Keating
,
M. O.
Rubinstein
, and
N. C.
Snaith
, “
Integral moments of L-functions
,”
Proc. London Math. Soc.
91
(
1
),
33
104
(
2005
).
3.
C. P.
Hughes
, “
Random matrix theory and discrete moments of the Riemann zeta function
,”
J. Phys. A: Math. Gen.
36
(
12
),
2907
2917
(
2003
).
4.
J. P.
Keating
and
N. C.
Snaith
, “
Random matrix theory and ζ(1/2 + it)
,”
Commun. Math. Phys.
214
,
57
89
(
2000
).
5.
J. B.
Conrey
, “
L-functions and random matrices
,” in
Mathematics Unlimited 2001 and Beyond
, edited by
B.
Enquist
and
W.
Schmid
(
Springer-Verlag
,
Berlin
,
2001
, pp.
331
352
; arXiv:math.nt/0005300.
6.
J. P.
Keating
and
N. C.
Snaith
, “
Random matrices and L-functions
,”
J. Phys. A: Math. Gen.
36
(
12
),
2859
2881
(
2003
).
7.
N. C.
Snaith
, “
Riemann zeros and random matrix theory
,”
Milan J. Math.
78
(
1
),
135
152
(
2010
) [
Conference: 1st School of the Riemann-International-School-of-Mathematics, Verbania, Italy
].
8.
J. B.
Conrey
and
D. W.
Farmer
, “
Mean values of L-functions and symmetry
,”
Int. Math. Res. Not.
2000
(
17
),
883
908
; arXiv:math.nt/9912107.
9.
B.
Conrey
,
D. W.
Farmer
, and
M. R.
Zirnbauer
, “
Autocorrelation of ratios of L-functions
,”
Commun. Number Theory Phys.
2
(
3
),
593
636
(
2008
); arXiv:0711.0718.
10.
N. M.
Katz
and
P.
Sarnak
,
Random Matrices, Frobenius Eigenvalues and Monodromy
(
AMS Colloquium Publications
,
Providence
,
1998
).
11.
N. M.
Katz
and
P.
Sarnak
, “
Zeros of zeta functions and symmetry
,”
Bull. Am. Math. Soc.
36
,
1
26
(
1999
).
12.
J. P.
Keating
and
N. C.
Snaith
, “
Random matrix theory and L-functions at s = 1/2
,”
Commun. Math. Phys.
214
,
91
110
(
2000
).
13.
A.
Selberg
, “
On the normal density of primes in small intervals, and the difference between consecutive primes
,”
Arch. Math. Nat.
47
(
6
),
87
105
(
1943
).
14.
D. A.
Goldston
,
S. M.
Gonek
, and
H. L.
Montgomery
, “
Mean values of the logarithmic derivative of the Riemann zeta-function with applications to primes in short intervals
,”
J. Reine Angew Math.
2001
(
537
),
105
126
.
15.
D. W.
Farmer
,
S. M.
Gonek
,
Y.
Lee
, and
S. J.
Lester
, “
Mean values of ζ/ζ(s), correlations of zeros and the distribution of almost primes
,”
Q. J. Math.
64
(
4
),
1057
1089
(
2013
).
16.
J.
Conrey
and
N.
Snaith
, “
Correlations of eigenvalues and Riemann zeros
,”
Commun. Number Theory Phys.
2
(
3
),
477
536
(
2008
).
17.
D. W.
Farmer
, “
Mean values of ζ/ζ and the Gaussian unitary ensemble hypothesis
,”
Int. Math. Res. Not.
1995
(
2
),
71
82
.
18.
C. R.
Guo
, “
The distribution of the logarithmic derivative of the Riemann zeta function
,”
Proc. London Math Soc.
72
(
3
),
1
27
(
1996
).
19.
S. J.
Lester
, “
The distribution of the logarithmic derivative of the Riemann zeta-function
,”
Q. J. Math.
65
,
1319
1344
(
2014
).
20.
C. P.
Hughes
,
J. P.
Keating
, and
N.
O’Connell
, “
Random matrix theory and the derivative of the Riemann zeta function
,”
Proc. R. Soc. London, Ser. A
456
,
2611
2627
(
2000
).
21.
F.
Mezzadri
, “
Random matrix theory and the zeroes of ζ(s)
,”
J. Phys. A: Math. Gen.
36
(
12
),
2945
2962
(
2003
).
22.
J. B.
Conrey
,
M. O.
Rubinstein
, and
N. C.
Snaith
, “
Moments of the derivative of characteristic polynomials with an application to the Riemann zeta function
,”
Commun. Math. Phys.
267
(
3
),
611
629
(
2006
).
23.
C. P.
Hughes
, “
On the characteristic polynomial of a random unitary matrix and the Riemann zeta function
,” Ph.D. thesis,
University of Bristol
,
2001
.
24.
P.-O.
Dehaye
, “
Joint moments of derivatives of characteristic polynomials
,”
Alg. Number Theory
2
(
1
),
31
68
(
2008
).
25.
H.
Riedtmann
, “
A combinatorial approach to mixed ratios of characteristic polynomials
,” arXiv:math.nt/1805.07261 (
2018
).
26.
B.
Winn
, “
Derivative moments for characteristic polynomials from the CUE
,”
Commun. Math. Phys.
315
,
531
562
(
2012
).
27.
J.
Conrey
,
P.
Forrester
, and
N.
Snaith
, “
Averages of ratios of characteristic polynomials for the compact classical groups
,”
Int. Math. Res. Not.
2005
(
7
),
397
431
.
28.
A. M.
Mason
and
N. C.
Snaith
, , Memoirs of the American Mathematical Society (
AMS
,
2018
), Vol. 251, No. 1194.
You do not currently have access to this content.