The purpose of this note is to establish, from the hypergeometric-type difference equation introduced by Nikiforov and Uvarov, new tractable sufficient conditions for the monotonicity with respect to a real parameter of zeros of classical discrete orthogonal polynomials. This result allows one to carry out a systematic study of the monotonicity of zeros of classical orthogonal polynomials on linear, quadratic, q-linear, and q-quadratic grids. In particular, we analyze in a simple and unified way the monotonicity of the zeros of Hahn, Charlier, Krawtchouk, Meixner, Racah, dual Hahn, q-Meixner, quantum q-Krawtchouk, q-Krawtchouk, affine q-Krawtchouk, q-Charlier, Al-Salam–Carlitz, q-Hahn, little q-Jacobi, little q-Laguerre/Wall, q-Bessel, q-Racah, and dual q-Hahn polynomials.

1.
G. E.
Andrews
,
R.
Askey
, and
R.
Roy
,
Special Functions
, Encyclopedia of Mathematics and Its Applications Vol. 71 (
Cambridge University Press
,
Cambridge
,
1999
).
2.
R.
Askey
and
J.
Wilson
, “
Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials
,”
Mem. Am. Math. Soc.
54
(
319
),
55
(
1985
).
3.
N. M.
Atakishiyev
,
M.
Rahman
, and
S. K.
Suslov
, “
On classical orthogonal polynomials
,”
Constr. Approx.
11
,
181
226
(
1995
).
4.
M. E. H.
Ismail
,
Classical and Quantum Orthogonal Polynomials in One Variable
, Encyclopedia of Mathematics and Its Applications Vol. 98 (
Cambridge University Press
,
Cambridge
,
2005
).
5.
S.
Karlin
and
J. L.
McGregor
, “
The Hahn polynomials, formulas and an application
,” Technical Report No. 2,
Applied Mathematics and Statistics Laboratorires, Stanford University
,
Stanford, CA
,
April 1960
.
6.
R.
Koekoek
,
P. A.
Lesky
, and
R. F.
Swarttouw
,
Hypergeometric Orthogonal Polynomials and Their Q-Analogues
, Springer Monographs in Mathematics (
Springer
,
2010
).
7.
R. J.
Levit
, “
The zeros of the Hahn polynomials
,”
SIAM Rev.
9
,
191
203
(
1967
).
8.
A.
Markoff
, “
Sur les racines de certaines équations (second note)
,”
Math. Ann.
27
,
177
182
(
1886
).
9.
P.
Maroni
, “
Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques
,” in
Orthogonal Polynomials and Their Applications
, IMACS Annals on Computing and Applied Mathematics Vol. 9, edited by
C.
Brezinski
,
L.
Gori
, and
A.
Ronveaux
(
Baltzer, Basel
,
1991
), pp.
95
130
.
10.
Ch. K.
Mesztenyi
, “
Orthogonal polynomials on a finite set
,” Technical Report No. TR-66-30,
University of Maryland
,
1966
.
11.
A. F.
Nikiforov
,
S. K.
Suslov
, and
V. B.
Uvarov
,
Classical Orthogonal Polynomials of a Discrete Variable
(
Nauka
,
Moscow
,
1985
) (Russian).
12.
A. F.
Nikiforov
,
S. K.
Suslov
, and
V. B.
Uvarov
,
Classical Orthogonal Polynomials of a Discrete Variable
, Springer Series in Computational Physics (
Springer-Verlag
,
1991
), translated from the Russian.
13.
A. F.
Nikiforov
and
V. B.
Uvarov
,
Special Functions of Mathematical Physics With a Preface by A. A. Samarskii
(
Nauka
,
Moscow
,
1978
) (Russian).
14.
A. F.
Nikiforov
and
V. B.
Uvarov
,
Classical Orthogonal Polynomials of a Discrete Variable
(
Keldysh Institute of Applied Mathematics
,
1983
) (Russian).
15.
A. F.
Nikiforov
and
V. B.
Uvarov
,
Special Functions of Mathematical Physics With a Preface by A. A. Samarskii
, 2nd ed. (
Nauka
,
Moscow
,
1984
) (Russian).
16.
A. F.
Nikiforov
and
V. B.
Uvarov
, “
Polynomial solutions of hypergeometric type difference equations and their classification
,”
Integral Transforms Spec. Funct.
1
,
223
249
(
1993
).
17.
J.
Petronilho
,
Orthogonal Polynomials and Special Functions
, Class Notes for a Course given in the UC|UP Joint Ph.D. Program in Mathematics (
University of Coimbra
,
2018
).
18.
B.
Simon
,
Basic Complex Analysis. A Comprehensive Course in Analysis, Part 2A
(
American Mathematical Society
,
Providence, RI
,
2015
).
19.
B.
Simon
,
Opetator Theory. A Comprehensive Course in Analysis, Part 4
(
American Mathematical Society
,
Providence, RI
,
2015
).
20.
T. J.
Stieltjes
, “
Sur les racines de l’equation Xn = 0
,”
Acta Math.
9
,
385
400
(
1887
).
21.
T. J.
Stieltjes
and
Ch.
Hermite
,
Correspondance d’Hermite et de Stieltjes
(
Gauthier-Villars
,
Paris
,
1905
), Vol. I.
22.
G.
Szegő
,
Orthogonal Polynomials
, American Mathematical Society Colloquium Publications Vol. 23, revised edition (
American Mathematical Society
,
Providence, RI
,
1959
).
23.
R. S.
Varga
,
Matrix Iterative Analysis
(
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
,
1962
).
24.
N. Ja.
Vilenkin
and
U. A.
Klimyk
,
Representation of Lie Groups and Special Functions: Volume 1 Simplest Lie Groups, Special Functions and Integral Transforms
, Mathematics and Its Applications (Soviet Series) Vol. 72 (
Kluwer Academic Publishers Group
,
Dordrecht
,
1991
), translated from the Russian by V. A. Groza and A. A. Groza.
25.

We write “classical orthogonal polynomials on the real line” rather than simply “classical orthogonal polynomials” because, for instance, from the algebraic point of view of Maroni (see Ref. 9), the Jacobi polynomials exist and are “classical” even when α,β,αβ+1N (see Refs. 17, Chaps. 8 and 9, for a recent survey on the subject). Moreover, the Bessel polynomials are classical in the same sense as the other three systems. As Maroni says, “comme dans le roman d’Alexandre Dumas, les trois mousquetaires étaient quatre en réalité.”

26.

For a “continuous” case, as the Askey–Wilson polynomials, Askey and Wilson used a consequence of Markov’s theorem, which goes back to Szegő (see Ref. 22, Theorem 6.12.2), to study the monotonicity of zeros of these polynomials (see Ref. 2, Sec. 7).

27.

In first edition of “Special Functions of Mathematical Physics” (see Ref. 13), the author only consider the case x(s) = s. The second edition (see Ref. 15) was significantly enriched with the Eq. (1.4); although A. A. Samarskii’s preface is the same in both editions.

28.

If a and b are finite, (1.7) can be written in the form ω(a)a(a) = 0 and ω(b)a(b) = 0. If a = − and/or b = , then (1.7) must hold for each k in the limiting sense.

29.

Recall that for a continuous case on the grid (VI) as the Askey–Wilson polynomials, the monotonicity of their zeros was studied in Ref. 2, Sec. 7.

You do not currently have access to this content.